
21. srednješolsko tekmovanje ACM v znanju računalnǐstva

Šolsko tekmovanje

23. januarja 2026

NASVETI ZA TEKMOVALCE

Naloge na tem šolskem tekmovanju pokrivajo širok razpon težavnosti, tako da ni nič
hudega, če ne znaš rešiti vseh.

Nekatere naloge so tipa napǐsi program (ali napǐsi podprogram), nekatere pa
tipa opǐsi postopek. Pri slednjih ti ni treba pisati programa ali podprograma v
kakšnem konkretnem programskem jeziku, ampak lahko postopek opǐseš tudi kako dru-
gače: z besedami (v naravnem jeziku), psevdokodo (glej spodaj), diagramom poteka
itd. Glavno je, da je tvoj opis dovolj natančen, jasen in razumljiv, tako da je iz njega
razvidno, da si dejansko našel in razumel pot do rešitve naloge.

Psevdokodi pravijo včasih tudi strukturirani naravni jezik. Postopek opǐsemo v
naravnem jeziku, vendar opis strukturiramo na podoben način kot pri programskih
jezikih, tako da se jasno vidi strukturo vejitev, zank in drugih programskih elementov.

Primer opisa postopka v psevdokodi: recimo, da imamo zaporedje besed in bi ga
radi razbili na več vrstic tako, da ne bo nobena vrstica preširoka.

naj bo trenutna vrstica prazen niz;
pregleduj besede po vrsti od prve do zadnje:

če bi trenutna vrstica z dodano trenutno besedo (in presledkom
pred njo) postala predolga,

izpǐsi trenutno vrstico in jo potem postavi na prazen niz;
dodaj trenutno besedo na konec trenutne vrstice;

če trenutna vrstica ni prazen niz, jo izpǐsi;

(Opomba: samo zato, ker je tu primer psevdokode, to še ne pomeni, da moraš tudi ti
pisati svoje odgovore v psevdokodi.)

Če pa v okviru neke rešitve pǐseš izvorno kodo programa ali podprograma, obvezno
poleg te izvorne kode v nekaj stavkih opǐsi, kako deluje (oz. naj bi delovala) tvoja rešitev
in na kakšni ideji temelji.

Pri ocenjevanju so vse naloge vredne enako število točk. Svoje odgovore dobro utemelji.
Prizadevaj si predvsem, da bi bile tvoje rešitve pravilne, ob tem pa je zaželeno, da so tudi
čim bolj učinkovite (take dobijo več točk kot manj učinkovite). Za manǰse sintaktične
napake se načeloma ne odbije veliko točk. Priporočljivo in zaželeno je, da so tvoje
rešitve napisane pregledno in čitljivo. Če je na listih, ki jih oddajaš, več različic rešitve
za kakšno nalogo, jasno označi, katera je tista, ki naj jo ocenjevalci upoštevajo.

Če naloga zahteva branje ali obdelavo vhodnih podatkov, lahko tvoja rešitev (če v nalogi
ni drugače napisano) predpostavi, da v vhodnih podatkih ni napak (torej da je njihova
vsebina in oblika skladna s tem, kar pǐse v nalogi).

Nekatere naloge zahtevajo branje podatkov s standardnega vhoda in pisanje na standar-
dni izhod. Za pomoč je tu nekaj primerov programov, ki delajo s standardnim vhodom
in izhodom:

• Program, ki prebere s standardnega vhoda dve števili in izpǐse na standardni izhod
njuno vsoto:

program BranjeStevil;
var i, j: integer;
begin

ReadLn(i, j);
WriteLn(i, ’ + ’, j, ’ = ’, i + j);

end. {BranjeStevil}

#include <stdio.h>
int main() {

int i, j; scanf("%d %d", &i, &j);
printf("%d + %d = %d\n", i, j, i + j);
return 0;

}

Navodila in nasveti za tekmovalce, stran 1/3

• Program, ki bere s standardnega vhoda po vrsticah, jih šteje in prepisuje na standar-
dni izhod, na koncu pa izpǐse še skupno dolžino:

program BranjeVrstic;
var s: string; i, d: integer;
begin

i := 0; d := 0;
while not Eof do begin

ReadLn(s);
i := i + 1; d := d + Length(s);
WriteLn(i, ’. vrstica: "’, s, ’"’);

end; {while}
WriteLn(i, ’ vrstic, ’, d, ’ znakov.’);

end. {BranjeVrstic}

#include <stdio.h>
#include <string.h>
int main() {

char s[201]; int i = 0, d = 0;
while (gets(s)) {

i++; d += strlen(s);
printf("%d. vrstica: \"%s\"\n", i, s);

}
printf("%d vrstic, %d znakov.\n", i, d);
return 0;

}

Opomba: C-jevska različica gornjega programa predpostavlja, da ni nobena vrstica vhodnega
besedila dalǰsa od dvesto znakov. Funkciji gets se je v praksi bolje izogibati, ker pri njej nimamo
zaščite pred primeri, ko je vrstica dalǰsa od naše tabele s. Namesto gets bi bilo bolje (in varneje)
uporabiti fgets ali fscanf; vendar pa za rešitev naših tekmovalnih nalog zadošča tudi gets.

• Program, ki bere s standardnega vhoda po znakih, jih prepisuje na standardni izhod,
na koncu pa izpǐse še število prebranih znakov (ne vštevši znakov za konec vrstice):

program BranjeZnakov;
var i: integer; c: char;
begin

i := 0;
while not Eof do begin

while not Eoln do
begin Read(c); Write(c); i := i + 1 end;

if not Eof then begin ReadLn; WriteLn end;
end; {while}
WriteLn(’Skupaj ’, i, ’ znakov.’);

end. {BranjeZnakov}

#include <stdio.h>

int main() {
int i = 0, c;
while ((c = getchar()) != EOF) {

putchar(c); if (i != ’\n’) i++;
}
printf("Skupaj %d znakov.\n", i);
return 0;

}

Še isti trije primeri v pythonu:

Branje dveh števil in izpis vsote:
import sys

a, b = sys.stdin.readline().split()
a = int(a); b = int(b)
print "%d + %d = %d" % (a, b, a + b)

Branje standardnega vhoda po vrsticah:
import sys

i = d = 0
for s in sys.stdin:

s = s.rstrip(’\n’) # odrežemo znak za konec vrstice
i += 1; d += len(s)
print "%d. vrstica: \"%s\"" % (i, s)

print "%d vrstic, %d znakov." % (i, d)

Branje standardnega vhoda znak po znak:
import sys

i = 0
while True:

c = sys.stdin.read(1)
if c == "": break # EOF
sys.stdout.write(c)
if c != ’\n’: i += 1

print "Skupaj %d znakov." % i

Navodila in nasveti za tekmovalce, stran 2/3

Še isti trije primeri v javi:

// Branje dveh števil in izpis vsote:
import java.io.*;
import java.util.Scanner;

public class Primer1
{

public static void main(String[] args) throws IOException
{

Scanner fi = new Scanner(System.in);
int i = fi.nextInt(); int j = fi.nextInt();
System.out.println(i + " + " + j + " = " + (i + j));

}
}

// Branje standardnega vhoda po vrsticah:
import java.io.*;

public class Primer2
{

public static void main(String[] args) throws IOException
{

BufferedReader fi = new BufferedReader(new InputStreamReader(System.in));
int i = 0, d = 0; String s;
while ((s = fi.readLine()) != null) {

i++; d += s.length();
System.out.println(i + ". vrstica: \"" + s + "\""); }

System.out.println(i + " vrstic, " + d + " znakov.");
}

}

// Branje standardnega vhoda znak po znak:
import java.io.*;

public class Primer3
{

public static void main(String[] args) throws IOException
{

InputStreamReader fi = new InputStreamReader(System.in);
int i = 0, c;
while ((c = fi.read()) >= 0) {

System.out.print((char) c); if (c != ’\n’ && c != ’\r’) i++; }
System.out.println("Skupaj " + i + " znakov.");

}
}

Navodila in nasveti za tekmovalce, stran 3/3

21. srednješolsko tekmovanje ACM v znanju računalnǐstva

Šolsko tekmovanje

23. januarja 2026

NALOGE ZA ŠOLSKO TEKMOVANJE

Svoje odgovore dobro utemelji. Če pǐseš izvorno kodo programa ali podprograma,
OBVEZNO tudi v nekaj stavkih z besedami opǐsi idejo, na kateri temelji tvoja rešitev.
Če ni v nalogi drugače napisano, lahko tvoje rešitve predpostavljajo, da so vhodni po-
datki brez napak (da ustrezajo formatu in omejitvam, kot jih podaja naloga). Zaželeno
je, da so tvoje rešitve poleg tega, da so pravilne, tudi učinkovite (bolj učinkovite rešitve
dobijo več točk). Nalog je pet in pri vsaki nalogi lahko dobǐs od 0 do 20 točk.

Rešitve bodo objavljene na https://rtk.ijs.si/.

1. Napredek

Podan imamo vrstni red istih tekmovalcev na dveh tekmovanjih. Tekmovalcev je n
in namesto z imeni so predstavljeni z enoličnimi številkami od 1 do n. Vsak izmed
tekmovalcev se pojavlja v obeh vrstnih redih. Primer:

prvo tekmovanje: 4, 2, 1, 3, 5
drugo tekmovanje: 4, 5, 2, 1, 3

Napǐsi program, ki bo izračunal, kdo je med prvim in drugim tekmovanjem najbolj
napredoval (ima največjo razliko med uvrstitvama). V gornjem primeru je to tekmovalec
s številko 5, ki je napredoval za tri mesta. Če je možnih odgovorov več, je vseeno,
katerega od njih izpǐseš. Tvoja rešitev naj bo učinkovita, da bo delovala hitro tudi za
velike n. Podrobnosti tega, v kakšni obliki dobi tvoj program vhodne podatke in kako
vrne ali izpǐse rezultate, si izberi sam in jih v svoji rešitvi tudi opǐsi.

Naloge za šolsko tekmovanje, stran 1/4

2. Tabela medalj

Dan je seznam medalj, ki so jih dobile različne države na nekem mednarodnem tekmo-
vanju. V vsaki vrstici je najprej ime države, nato pa barva medalje (zlato, srebro
ali bron). Da bo naloga lažja, predpostavimo, da so imena držav le enobesedna, brez
presledkov. Primer vhoda:

Kitajska zlato

VB bron

Francija srebro

VB zlato

...

Napǐsi program, ki prebere tak seznam in izpǐse tabelo, v kateri bo po ena vrstica
za vsako državo, v tej vrstici pa bodo ime države in število medalj (zlatih, srebrnih,
bronastih in vseh skupaj). Med stolpci naj bo po en presledek; imena držav naj bodo
poravnana levo, medalje pa desno. Posamezni stolpec naj ne bo širši, kot je treba (glede
na podatke v njem). Države naj bodo urejene padajoče po številu zlatih medalj; tiste
z enakim številom zlatih naj bodo urejene padajoče po številu srebrnih; tiste, ki se
ujemajo tako v številu zlatih kot v številu srebrnih, pa naj bodo urejene padajoče po
številu bronastih. Primer takšnega izpisa:

ZDA 40 44 42 126

Kitajska 40 27 24 91

Japonska 20 12 13 45

Avstralija 18 19 16 53

Francija 16 26 22 64

Nizozemska 15 7 12 34

...

Predpostavǐs lahko, da je različnih držav manj kot 200, da je vseh medalj skupaj manj
kot 2000 in da so imena držav dolga kvečjemu 20 znakov. Tvoj program lahko bere s
standardnega vhoda in pǐse na standardni izhod ali pa bere iz datoteke vhod.txt in pǐse
v datoteko izhod.txt (karkoli ti je lažje).

3. Okrožnica

Ena od obveznosti dežurnega dijaka je, da po šoli raznese okrožnico. Prebrati jo mora
vsakemu razredu, čas obiska posamičnega razreda in vrstni red obiskov pa si lahko izbere
poljubno. Pri tem se hoče izogniti obiskovanju učilnic, v katerih poučujejo nekateri
učitelji, saj ima z njimi slabe izkušnje.

Napǐsi program (ali podprogram oz. funkcijo), ki bo sprejel podatke o šolskem
urniku za en dan (torej v kateri učilnici so posamični razredi in učitelji vsako šolsko uro)
ter seznam učiteljev, ki se jih hočemo izogniti. Program oz. podprogram naj pripravi
razpored obiskovanja razredov, s katerim se ne oglasimo pri nobenem neželenem učitelju,
ali pa ugotovi, da takšen razpored ne obstaja. Število obiskov na šolsko uro ni omejeno.
Posamezen razred smemo obiskati največ enkrat.

Predpostavǐs lahko, da so učitelji, razredi, učilnice in šolske ure predstavljene z majh-
nimi naravnimi števili (recimo od 1 do 100), ne npr. z imeni ali kakšnimi drugimi bolj
zapletenimi oznakami. Urnik je podan kot zaporedje četveric oblike (u, r, p, t), ki povedo,
da učitelj u poučuje razred r v učilnici p na t-to šolsko uro dneva. Podrobnosti tega,
v kakšni obliki tvoj (pod)program dobi vhodne podatke in vrne ali izpǐse rezultate, si
izberi sam in jih v svoji rešitvi tudi opǐsi.

Naloge za šolsko tekmovanje, stran 2/4

4. Tridimenzionalni labirint

Rok se je naveličal reševanja labirintov, objavljenih v časopisih, in je presedlal na tridi-
menzionalne. Labirint je torej kvader, sestavljen iz A × B × C enotskih kockic, vsaka
pa je lahko bodisi prazna bodisi zid. Števila A, B in C so manǰsa ali enaka 100.
Položaj posamezne kockice v labirintu lahko opǐsemo s trojico koordinat (x, y, z), kjer
je x ∈ {0, . . . , A − 1}, y ∈ {0, . . . , B − 1} in z ∈ {0, . . . , C − 1}. Po labirintu se lahko
premikaš tako, da greš iz ene kockice v drugo, če sta obe prazni in imata skupno ploskev.
Kockica je izhod iz labirinta, če s kakšno od svojih ploskev meji na zunanjost kvadra
(labirinta).

Opǐsi postopek (ali napǐsi podprogram oz. funkcijo, če ti je lažje), ki dobi opis
labirinta in začetne koordinate, vrne pa koordinate najbližjega in najbolj oddaljenega
dosegljivega izhoda. (Če je možnih več rešitev, je vseeno, katero od njih vrne.) Pri tem
se seveda oddaljenost do izhoda meri kot dolžina najkraǰse poti od začetnega položaja
do tistega izhoda; dolžina poti po labirintu pa je definirana kot število korakov na
njej (število premikov iz ene kockice v sosednjo kockico). Če pǐseš podprogram, si
podrobnosti tega, v kakšni obliki tvoj podprogram dobi vhodne podatke in kako vrne
ali izpǐse rezultate, izberi sam in jih v svoji rešitvi tudi opǐsi.

Če ti je naloga pretežka, jo lahko za 13 točk od 20 rešǐs z dodatno predpostavko,
da v labirintu ni ciklov — z drugimi besedami, da je mogoče od ene prazne kockice do
druge priti po kvečjemu eni poti, nikoli po dveh ali več različnih poteh.

5. Skladǐsče

Neko podjetje ima v skladǐsču n zabojev (zaboji so oštevilčeni od 0 do n − 1). Zaboji
so različno težki (nobena dva nista enako težka), vendar do njihovih tež ne moremo
neposredno dostopati.

Posamezni zaboj je v posameznem trenutku v enem od dveh možnih stanj: izbran
ali neizbran. Podjetje bi rado po vsaki spremembi stanja vedelo, kateri zaboj je zdaj
srednji po teži med vsemi izbranimi zaboji.

”
Srednji po teži“ pomeni naslednje: če je

izbranih 2k ali 2k−1 zabojev, potem je srednji po teži tisti, ki je k-ti najlažji med njimi.
(Na primer: če je izbranih 7 ali 8 zabojev, je srednji po teži četrti najlažji med njimi; če
je izbranih 9 ali 10 zabojev, je srednji po teži peti najlažji med njimi; in tako naprej.)

Skladǐsče je razdeljeno na tri dvorane: A, B in C. V vsaki dvorani je dovolj prostora za
vse zaboje. Na voljo imaš naslednje podprograme za premikanje zabojev med dvoranami
in primerjanje zabojev po teži:

• PremakniIzAvB(z) — premakne zaboj s številko z iz dvorane A v dvorano B;
• PremakniIzAvC(z) — premakne zaboj s številko z iz dvorane A v dvorano C;
• PremakniIzB() — premakne iz dvorane B najtežji zaboj (izmed vseh, ki so takrat v

dvorani B) v dvorano A in vrne številko tega zaboja;
• PremakniIzC() — premakne iz dvorane C najlažji zaboj (izmed vseh, ki so takrat v

dvorani C) v dvorano A in vrne številko tega zaboja;
• JeLazjiOdB(z) — zaboj z mora biti iz dvorane A; funkcija vrne logično vrednost, ki

pove, ali je zaboj z lažji od najtežjega zaboja dvorane B ali ne;
• JeLazjiOdC(z) — zaboj z mora biti iz dvorane A; funkcija vrne logično vrednost, ki

pove, ali je zaboj z lažji od najlažjega zaboja dvorane C ali ne.

Teh podprogramov torej ne pǐseš ti, ampak predpostavi, da že obstajajo in da jih lahko
pokličeš iz svoje kode. Če podaš gornjim podprogramom kot parameter z neki zaboj,
ki se takrat ne nahaja v dvorani A, se bo tvoj program sesul; enako tudi, če pokličeš
PremakniIzB ali JeLazjiB takrat, ko je dvorana B prazna, ali pa če pokličeš PremakniIzC ali
JeLazjiC takrat, ko je dvorana C prazna.

Še enkrat poudarimo, da z zaboji ne moreš delati drugače kot tako, da kličeš gornje
podprograme.

Opǐsi, kako bi implementiral naslednja podprograma (oz. funkciji), ki bosta poma-
gala podjetju delati z izbranimi zaboji:

Naloge za šolsko tekmovanje, stran 3/4

• Inicializacija(n) — sistem ga bo poklical na začetku izvajanja, da si lahko inicializiraš
morebitne globalne spremenljivke in podobne stvari; kot parameter dobi število
zabojev n.

• SpremembaStanja(z) — sistem ga bo poklical, ko je treba zaboju z spremeniti stanje
(iz izbranega v neizbranega ali obratno). Funkcija naj vrne številko zaboja, ki je
(po spremembi) srednji po teži med izbranimi zaboji. Če po spremembi ni izbran
noben zaboj, naj funkcija vrne −1.

Poleg teh dveh podprogramov lahko tvoja rešitev deklarira in uporablja tudi svoje glo-
balne spremenljivke in pomožne podprograme. Če ti je lažje, lahko namesto opisa po-
stopka napǐseš implementacijo v kakšnem konkretnem programskem jeziku (je pa s tem
pri tej nalogi razmeroma dosti dela).

Predpostavi, da se na začetku izvajanja nahajajo vsi zaboji v dvorani A in da ni
noben zaboj izbran. Operaciji JeLazjiOdB in JeLazjiOdC sta dragi, zato je pomembno, da
ju uporabǐs čim manjkrat.

Če ti je naloga pretežka, lahko za 13 točk od 20 rešǐs lažjo različico, pri kateri se
zabojem stanje spreminja le iz neizbranega v izbrano, nikoli pa obratno (ko je torej
zaboj enkrat izbran, odtlej vedno ostane izbran).

Naloge za šolsko tekmovanje, stran 4/4

21. srednješolsko tekmovanje ACM v znanju računalnǐstva

Šolsko tekmovanje

23. januarja 2026

REŠITVE NALOG ŠOLSKEGA TEKMOVANJA

1. Napredek

Ker so tekmovalci predstavljeni s številkami namesto z imeni, lahko številko tekmovalca
uporabimo kot indeks v tabelo ali vektor. Najprej v zanki preberimo vrstni red s prvega
tekmovanja in si v neki tabeli (v spodnji rešitvi je to mesto1) za vsakega tekmovalca
zapǐsimo, na katerem mestu je bil (to je ravno števec zanke, s katero beremo tekmovalce).
Nato v še eni zanki berimo vrstni red z drugega tekmovanja; pri vsakem prebranem
tekmovalcu vemo, na katerem mestu je v tem drugem vrstnem redu, v prej omenjeni
tabeli pa imamo podatek o tem, na katerem mestu je bil v prvem vrstnem redu. Tako
ni težko izračunati razlike med obema uvrstitvama, to pa je napredek opazovanega
tekmovalca. Imejmo še dve spremenljivki, ki povesta največji doslej najdeni napredek
(maxNapredek) in številko tekmovalca, ki je ta napredek dosegel (maxKdo); pri vsakem
novem tekmovalcu poglejmo, če je njegov napredek večji od največjega doslej, in če je,
si ga zapomnimo. Na koncu izpǐsimo številko tekmovalca z največjim napredkom.

Oglejmo si implementacijo takšne rešitve v C++. Predpostavili bomo, da podatke
dobimo na standardnem vhodu v treh vrsticah; v prvi je n, v preostalih dveh pa sta oba
vrstna reda, pri čemer so števila ločena s presledkom. Tudi rezultat bomo izpisali na
standardni izhod.

#include <iostream>
#include <vector>
using namespace std;

int main()
{

// Preberimo število tekmovalcev.
int n; cin >> n;

// Preberimo prvi vrstni red in si za vsakega tekmovalca zapomnimo,
vector<int> mesto1(n + 1); // na katerem mestu je bil.
for (int i = 0; i < n; ++i) {

int tekmovalec; cin >> tekmovalec;
mesto1[tekmovalec] = i; }

// Preberimo drugi vrstni red, sproti računajmo napredek vsakega
// tekmovalca in si zapomnimo najbolǰsega.
int maxNapredek = −1, maxKdo = −1;
for (int i = 0; i < n; ++i) {

int tekmovalec; cin >> tekmovalec;

// Za koliko mest je ta tekmovalec napredoval?
int napredek = mesto1[tekmovalec] − i;

// Če je to največji napredek doslej, si ga zapomnimo.
if (maxKdo < 0 || napredek > maxNapredek)

maxNapredek = napredek, maxKdo = tekmovalec; }
// Izpǐsimo rezultat.
cout << maxKdo << endl; return 0;

}

Opozorimo še na dve podrobnosti: za mesto1 smo alocirali n+ 1 elementov dolg vektor,
da bomo lahko kot indekse uporabljali številke tekmovalcev, ki gredo od 1 do n namesto
od 0 do n− 1. (Lahko bi namesto tega seveda od številke tekmovalca odšteli 1, preden
jo uporabimo kot indeks v vektor.) Pri računanju napredka pa pazimo na to, da nižja

Rešitve nalog šolskega tekmovanja, stran 1/9

številka mesta pomeni vǐsjo uvrstitev; napredek je torej tem večji, čim bolj se je tekmo-
valcu številka mesta znižala. Zato pri izračunu napredka odštejemo mesto na drugem
tekmovanju od mesta na prvem tekmovanju (in ne obratno).

Oglejmo si še implementacijo takšne rešitve v pythonu:

n = int(input()) # Preberimo število tekmovalcev.

Preberimo prvi vrstni red in si za vsakega tekmovalca zapomnimo,
mesto1 = [−1] * (n + 1) # na katerem mestu je bil.
vrstniRed = [int(s) for s in input().split()]
for i in range(n): mesto1[vrstniRed[i]] = i;

Preberimo drugi vrstni red.
vrstniRed = [int(s) for s in input().split()]

Za vsakega tekmovalca izračunajmo napredek in si zapomnimo najbolǰsega.
maxNapredek = −1; maxKdo = −1
for i in range(n):

tekmovalec = vrstniRed[i]

Za koliko mest je ta tekmovalec napredoval?
napredek = mesto1[tekmovalec] − i

Če je to največji napredek doslej, si ga zapomnimo.
if maxKdo < 0 or napredek > maxNapredek:

maxNapredek = napredek; maxKdo = tekmovalec

print(maxKdo) # Izpǐsimo rezultat.

2. Tabela medalj

Za vsako državo bomo vzdrževali zapis, ki bo vseboval ime države, število medalj vsake
barve (zlate, srebrne, bronaste) in skupno število medalj. Vhodne podatke bomo brali v
zanki; pri vsaki prebrani medalji poǐsčemo zapis za to državo (če ga še nimamo, ga zdaj
dodamo) in v njej povečamo za 1 števec medalj tiste barve ter skupni števec medalj.1

Ko pridemo do konca vhodnih podatkov, uredimo zapise o državah tako, kot naloga
zahteva za izpis tabele, torej padajoče po številu zlatih medalj, države z enakim številom
zlatih uredimo padajoče po številu srebrnih in tako naprej. V spodnji rešitvi smo upo-
rabili funkcijo sort iz C++ove standardne knjižnice, napisali pa smo svoj primerjalni
operator.

Preden lahko začnemo tabelo zares izpisovati, moramo določiti širine stolpcev, kajti
od tega je odvisno, koliko presledkov bo treba vriniti, da bo izpis lepo poravnan. Za prvi
stolpec je treba pogledati, kako dolgo je najdalǰse ime kakšne države; za ostale stolpce
pa je dovolj, če poǐsčemo največje število medalj v vsakem stolpcu in preštejemo, koliko
znakov je to število dolgo, če ga pretvorimo v niz.

Nato gremo lahko še enkrat v zanki po državah in sproti izpisujemo vrstice naše
tabele. Pri tem pazimo na to, da bodo stolpci primerno široki in poravnani (imena
levo, medalje desno). V spodnji rešitvi smo si pomagali z I/O manipulatorji iz C++ove
standardne knjižnice (left in right za poravnavanje, setw za širino stolpca).

#include <iostream>
#include <iomanip>
#include <string>
#include <algorithm>
#include <utility>
#include <vector>
using namespace std;

struct Drzava
{

string ime;

1Ker naloga pravi, da je držav (in medalj) malo, bo dovolj dobro, če hranimo zapise o državah v
tabeli ali vektorju in se pri vsaki prebrani medalji zapeljemo v zanki po zapisih, da najdemo pravega
(za trenutno državo); če pa bi bilo držav lahko veliko, bi bilo zapise bolje hraniti v slovarju oz. razpršeni
tabeli, kjer bi ime države uporabljali kot ključ (v C++ bi na primer uporabili unordered_map iz standardne
knjižnice).

Rešitve nalog šolskega tekmovanja, stran 2/9

int medalje[4]; // zlate, srebrne, bronaste, skupaj

// Spodnji operator primerja zapise glede na vrstni red v izpisu: prej pridejo
// države z več zlatimi medaljami; tiste z enakim številom zlatih se uredi
// padajoče po srebrnih itd.
bool operator < (const Drzava &D) const {

for (int b = 0; b < 3; ++b)
if (medalje[b] != D.medalje[b]) return medalje[b] > D.medalje[b];

return false; }
};

int main()
{

vector<Drzava> drzave;
while (true)
{

// Preberimo naslednjo medaljo.
string ime, barva; cin >> ime >> barva; if (! cin) break;

// Poǐsčimo zapis za to državo.
int i = 0; while (i < drzave.size() && drzave[i].ime != ime) ++i;

// Če to državo vidimo prvič, zapis zanjo zdaj dodajmo.
if (i == drzave.size()) drzave.push_back({ime, 0, 0, 0, 0});
// Povečajmo števec medalj ustrezne barve in skupni števec vseh medalj.
++drzave[i].medalje[barva == "zlato" ? 0 : barva == "srebro" ? 1 : 2];
++drzave[i].medalje[3];

}

// Uredimo države po medaljah.
sort(drzave.begin(), drzave.end());

// Določimo širine stolpcev. Za začetek v sirine[0] pripravimo dolžino
// najdalǰsega imena, v sirine[1..4] pa največje število medalj vsake barve in skupaj.
int sirine[5] = {0, 0, 0, 0};
for (auto &D : drzave) {

sirine[0] = max(sirine[0], (int) D.ime.length());
for (int b = 1; b < 5; ++b) sirine[b] = max(sirine[b], D.medalje[b − 1]); }

// Iz največjega števila medalj določimo širino stolpca.
for (int b = 1; b < 5; ++b) sirine[b] = to_string(sirine[b]).length();

// Izpǐsimo tabelo.
for (auto &D : drzave) {

cout << left << setw(sirine[0]) << D.ime << right;
for (int b = 1; b < 5; ++b) cout << " " << setw(sirine[b]) << D.medalje[b − 1];
cout << endl; }

return 0;
}

Oglejmo si še primer rešitve v pythonu; tu bodo nekatere stvari malo lažje in kraǰse
kot v C++. Med branjem vhodnih podatkov bomo zapise o državah hranili v slovarju
namesto v seznamu, tako da bo zelo enostavno najti pravi zapis (oz. ugotoviti, da ga
še nimamo). Ko pa z branjem vhodnih podatkov končamo in je treba države urediti,
jih bomo predstavili s pari oblike (medalje, ime), pri čemer je medalje seznam, ki ima na
prvem mestu število zlatih medalj, na drugem število srebrnih itd.; če seznam takšnih
parov uredimo padajoče, bomo dobili točno tak vrstni red, kot ga potrebujemo za izpis
v naši tabeli.

Za izpis stolpcev s primerno širino pride prav pythonov mehanizem za formatiranje
nizov s predpono f. Če bi hoteli na primer spremenljivko x pretvoriti v niz širine 5 znakov,
bi lahko uporabili f"{x:5}"; če pa širine vnaprej ne poznamo in jo imamo v spremenljivki
y, lahko uporabimo f"{x:{y}}". Če je x niz, bo poravnan levo, če je število, pa desno,
kar je za potrebe naše naloge ravno prav, torej se nam s smerjo poravnavanja ni treba
ukvarjati.

import sys
drzave = {}

Rešitve nalog šolskega tekmovanja, stran 3/9

for vrstica in sys.stdin:
ime, barva = vrstica.strip().split()

Če to državo vidimo prvič, zapis zanjo zdaj dodajmo.
if ime not in drzave: drzave[ime] = [0, 0, 0, 0]
barva = 0 if barva == "zlato" else 1 if barva == "srebro" else 2

Povečajmo števec medalj ustrezne barve in skupni števec vseh medalj.
drzave[ime][barva] += 1; drzave[ime][3] += 1

Uredimo države po številu medalj.
drzave = [(medalje, ime) for (ime, medalje) in drzave.items()]
drzave.sort(reverse = True)

Določimo širine stolpcev. Za začetek v sirine[0] pripravimo dolžino
najdalǰsega imena, v sirine[1..4] pa največje število medalj vsake barve in skupaj.
sirine = [0] * 5
for (medalje, ime) in drzave:

sirine[0] = max(sirine[0], len(ime))
for b in range(4): sirine[b + 1] = max(sirine[b + 1], medalje[b])

Iz največjega števila medalj določimo širino stolpca.
for b in range(1, 5): sirine[b] = len(str(sirine[b]))

Izpǐsimo tabelo.
for (medalje, ime) in drzave:

sys.stdout.write(f"{ime:{sirine[0]}}")
for b in range(1, 5): sys.stdout.write(f" {medalje[b - 1]:{sirine[b]}}")
sys.stdout.write("\n")

3. Okrožnica

Ker smemo v isti uri obiskati poljubno mnogo razredov, je sestavljanje razporeda pre-
prosto. V zanki pojdimo po zapisih, iz katerih je sestavljen urnik. Če v zapisu nastopa
kakšen od učiteljev, ki se jim izogibamo, ta zapis preskočimo. Podobno, če v zapisu na-
stopa kakšen od razredov, ki smo jih v preteklosti že obvestili, tudi ta zapis preskočimo
(saj istega razreda ne smemo obiskati večkrat). Sicer pa nas nič ne ovira, da ne bi tega
razreda obvestili zdaj, torej dodajmo obisk tega razreda to uro v naš razpored. Na
koncu moramo le še preveriti, če smo uspeli obiskati vse razrede (načeloma bi se lahko
zgodilo, da bi bil neki razred v urniku vedno prisoten skupaj z enim od tistih učiteljev,
ki se jim izogibamo; takšnega razreda ne moremo obvestiti, torej razpored, po kakršnem
sprašuje naloga, ne obstaja).

Za lažje preverjanje, ali se nekemu učitelju izogibamo in ali smo neki razred že
obvestili, bomo vzdrževali dve tabeli oz. vektorja logičnih vrednosti; naloga pravi, da so
učitelji in razredi predstavljeni s števili od 1 do 100, zato lahko rezerviramo tabeli 101
elementov in uporabimo številko učitelja ali razreda kot indeks vanjo.

Oglejmo si primer implementacije takšne rešitve v C++. Spodnja funkcija Pripra-

viRazpored dobi kot vhodne podatke dva vektorja, urnik in izogibajSe (slednji je seznam
številk učiteljev, ki se jim izogibamo), razpored obiskov pa vrne v vektorju razpored.
Funkcija PripraviRazpored vrne logično vrednost, ki pove, ali je ustrezen razpored uspela
pripraviti ali ne.

#include <vector>
using namespace std;

struct Ura { int ucitelj, ucilnica, razred, ura; };
struct Obisk { int ucilnica, ura; };

bool PripraviRazpored(const vector<Ura> &urnik, const vector<int> &izogibajSe,
vector<Obisk> &razpored)

{
// Pripravimo si vektor, kjer za vsakega učitelja pǐse, ali se mu izogibamo ali ne.
vector<bool> izogibajSeB(101, false);
for (int ucitelj : izogibajSe) izogibajSeB[ucitelj] = true;

// Preglejmo urnik in pripravimo razpored obiskov.
vector<bool> razredObvescen(101, false); razpored.clear();

Rešitve nalog šolskega tekmovanja, stran 4/9

for (auto &U : urnik)
{

if (izogibajSeB[U.ucitelj]) continue;
if (razredObvescen[U.razred]) continue;

// Ta razred še ni bil obveščen, torej ga obvestimo zdaj.
razredObvescen[U.razred] = true;
razpored.push_back({U.ucilnica, U.ura});

}
// Poglejmo, ali smo uspeli obvestiti vse razrede.
for (auto &U : urnik) if (! razredObvescen[U.razred]) return false;
return true;

}

Oglejmo si še primer podobne rešitve v pythonu. Tokrat bomo namesto tabel logičnih
vrednosti uporabili množice (pythonov tip set). Poleg množice obveščenih razredov bomo
med pregledovanjem urnika pripravili tudi množico vseh razredov; na koncu lahko obe
množici primerjamo in če sta enaki, vemo, da smo uspeli obvestiti vse razrede, sicer pa
ne. Podprogram PripraviRazpored v spodnji rešitvi vrne razpored kot seznam zapisov tipa
Obisk, če pa primernega razporeda ni, vrne None.

from collections import namedtuple
Ura = namedtuple("Ura", ["ucitelj", "ucilnica", "razred", "ura"])
Obisk = namedtuple("Obisk", ["ucilnica", "ura"])

def PripraviRazpored(urnik: list[Ura], izogibajSe: list[int]) −> list[Obisk]:
Seznam učiteljev, ki se jim izogibamo, predelajmo v množico.
izogibajSe = set(izogibajSe)

Preglejmo urnik in pripravimo razpored obiskov.
razpored = []; obvesceniRazredi = set(); vsiRazredi = set()
for U in urnik:

vsiRazredi.add(U.razred)
if U.ucitelj in izogibajSe: continue
if U.razred in obvesceniRazredi: continue

Tega razreda še nismo obvestili, torej ga obǐsčimo zdaj.
razpored.append(Obisk(U.ucilnica, U.ura))
obvesceniRazredi.add(U.razred)

Preverimo, ali smo obvestili vse razrede.
return razpored if obvesceniRazredi == vsiRazredi else None

4. Tridimenzionalni labirint

Naloga je zelo primerna za reševanje z iskanjem v širino. Kockice, dosegljive iz začetne,
bomo pregledovali po naraščajoči oddaljenosti. Pri tem bomo vzdrževali vrsto kockic, za
katere že vemo, da so dosegljive, nismo pa še pregledali, kako je mogoče pot nadaljevati iz
njih; postopek se začne s tem, da dodamo v vrsto le začetno kockico. Glavnino postopka
tvori zanka, kjer v vsaki iteraciji vzamemo eno kockico z začetka vrste in dodamo na
konec vrste tiste njene prazne sosede, ki jih doslej še nismo videli (in dodali v vrsto).
(Potrebovali bomo torej tudi tabelo, v kateri bomo označevali, katere kockice smo že
videli in dodali v vrsto; v spodnji rešitvi je to zeVidena.) Sosede kockice (x, y, z) so
(x± 1, y, z), (x, y ± 1, z) in (x, y, z ± 1).

Ko vzamemo kockico iz vrste, lahko tudi preverimo, če je tam izhod, torej če leži
na eni od zunanjih ploskev kvadra; to je takrat, ko je ena od koordinat enaka 0 ali pa
je x = A − 1 ali y = B − 1 ali z = C − 1. Ker pregledujemo kockice po naraščajoči
oddaljenosti od začetne, bo prvi izhod, ki ga bomo našli, tudi najbližji, zadnji najdeni
izhod pa bo najbolj oddaljen od začetne kockice. Tako si torej ne bo težko zapomniti
najbližjega in najbolj oddaljenega izhoda.

Oglejmo si primer implementacije te rešitve v C++. Položaj kockice lahko namesto s
trojico koordinat (x, y, z) predstavimo tudi z enim samim številom x ·BC+y ·C+z, kar
je prikladno, ker ga lahko potem uporabimo tudi kot indeks v tabelo ali vektor. Spodnji
podprogram uporablja to pri vektorjih jePrazna (ki ga dobi kot parameter; v njem za

Rešitve nalog šolskega tekmovanja, stran 5/9

vsako kockico pǐse, ali je prazna ali ne) in zeVidena (za označevanje, katere kockice smo
že dodali v vrsto). Naš podprogram vrne logično vrednost, ki pove, ali je iz začetnega
položaja sploh dosegljiv kak izhod.

#include <vector>
#include <queue>
using namespace std;

struct Tocka { int x, y, z; };

bool Labirint(int A, int B, int C,
// jePrazna[x * B * C + y * C + z] pove, ali je kockica (x, y, z) prazna
vector<bool> &jePrazna,
Tocka zacetek, Tocka &najblizjiIzhod, Tocka &najboljOddaljenIzhod)

{
// zeVidena hrani podatke o tem, katere kockice smo med iskanjem v širino že videli.
vector<bool> zeVidena(A * B * C, false);

// Iskanje v širino bomo začeli pri kockici
”
zacetek“.

int u0 = (zacetek.x * B + zacetek.y) * C + zacetek.z;
zeVidena[u0] = true; queue<int> vrsta; vrsta.emplace(u0);
bool naselIzhod = false;

// Preǐsčimo vse prazne kockice, dosegljive iz začetnega položaja.
while (! vrsta.empty())
{

int u = vrsta.front(); vrsta.pop();
int x = u / (B * C), y = (u / C) % B, z = u % C;

// Kockica (x, y, z) je prazna in dosegljiva. Ali je tudi izhod?
if (x == 0 || y == 0 || z == 0 || x == A − 1 || y == B − 1 || z == C − 1) {

// Zadnji najdeni izhod bo najbolj oddaljen.
najboljOddaljenIzhod = Tocka{x, y, z};
// Prvi najdeni izhod je tudi najbližji.
if (! naselIzhod) { naselIzhod = true; najblizjiIzhod = Tocka{x, y, z}; } }

// Preglejmo sosede trenutne kockice. Po eni od koordinat se lahko premaknemo za ± 1.
for (int dim = 0; dim < 3; ++dim) for (int d = 0; d < 2; ++d)
{

int xx = x, yy = y, zz = z; (dim == 0 ? xx : dim == 1 ? yy : zz) += 2 * d − 1;

// Kockica (xx, yy, zz) je soseda kockice (x, y, z).
// Ali smo morda padli ven iz kvadra?
if (xx < 0 || xx >= A || yy < 0 || yy >= B || zz < 0 || zz >= C) continue;

// Če smo to sosednjo kockico že videli ali pa je zazidana, jo preskočimo.
int v = (xx * B + yy) * C + zz;
if (! jePrazna[v] || zeVidena[v]) continue;
// Sicer jo dodajmo v vrsto, da bomo kasneje nadaljevali pot iz nje.
zeVidena[v] = true; vrsta.emplace(v);

}
}
return naselIzhod;

}

Oglejmo si še implementacijo takšne rešitve v pythonu. Koordinate kockic lahko pred-
stavimo s pythonovimi n-tericami (tuple); v taki obliki pričakuje naša spodnja funkcija
začetni položaj (zacetek), kot rezultat pa vrne funkcija par takšnih n-teric, eno za naj-
bližji izhod in eno za najbolj oddaljenega; če iz začetnega položaja sploh ni dosegljiv
noben izhod, funkcija vrne (None, None). Za označevanje tega, katere kockice smo že
videli (in dodali v vrsto), smo za spremembo namesto tabele uporabili množico (set v
pythonu).2

2Podobno bi lahko naredili tudi v gornji C++ovski rešitvi, npr. z razredom unordered_set iz standardne
knjižnice. Ali je bolǰsa tabela ali množica, je v splošnem težko reči, saj je to odvisno od tega, kolikšen
delež kvadra bomo morali preiskati (več kockic ko obǐsčemo, manj je koristi od tega, da smo namesto
tabele uporabili množico).

Rešitve nalog šolskega tekmovanja, stran 6/9

import collections

jePrazna[x * B * C + y * C + z] pove, ali je kockica (x, y, z) prazna.
def Labirint(A: int, B: int, C: int, jePrazna: list[int], zacetek: tuple[int, int, int]):

Iskanje v širino bomo začeli pri kockici
”
zacetek“.

u0 = (zacetek[0] * B + zacetek[1]) * C + zacetek[2]
zeVidena = set([u0]); vrsta = collections.deque([u0])
najblizjiIzhod = None; najboljOddaljenIzhod = None

Preǐsčimo vse prazne kockice, dosegljive iz začetnega položaja.
while vrsta:

u = vrsta.popleft(); x = u // (B * C); y = (u // C) % B; z = u % C

Kockica (x, y, z) je prazna in dosegljiva. Ali je tudi izhod?
if x == 0 or y == 0 or z == 0 or x == A − 1 or y == A − 1 or z == A − 1:

Zadnji najdeni izhod bo najbolj oddaljen.
najboljOddaljenIzhod = (x, y, z)

Prvi najdeni izhod je tudi najbližji.
if najblizjiIzhod is None: najblizjiIzhod = (x, y, z)

Preglejmo sosede trenutne kockice. Po eni od koordinat se lahko premaknemo za ± 1.
for soseda in range(6):

v = [x, y, z]; v[soseda // 2] += 2 * (soseda % 2) − 1; (xx, yy, zz) = v

Kockica (xx, yy, zz) je soseda kockice (x, y, z).
Ali smo morda padli ven iz labirinta?
if not (0 <= xx < A and 0 <= yy < B and 0 <= zz < C): continue;

Če smo to sosednjo kockico že videli ali pa je zazidana, jo preskočimo.
v = (xx * B + yy) * C + zz
if v in zeVidena or not jePrazna[v]: continue

Sicer jo dodajmo v vrsto, da bomo kasneje nadaljevali pot iz nje.
zeVidena.add(v); vrsta.append(v)

return (najblizjiIzhod, najboljOddaljenIzhod)

5. Skladǐsče

Razmislimo, kaj se dogaja s srednjim zabojem po teži, ko se množica izbranih zabojev
spreminja. Recimo, da je bilo prej izbranih 2k zabojev in srednji je bil k-ti najlažji
med njimi; in recimo, da se jim pridruži še en nov zaboj. Zdaj imamo 2k + 1 izbranih
zabojev, torej bo srednji tisti, ki je zdaj (k + 1)-vi najlažji med njimi. To je morda
isti zaboj kot prej, če se je namreč novi zaboj vrinil pred njega v vrstnem redu po teži
(torej če je bil novi zaboj lažji od dosedanjega srednjega); če pa je novi zaboj težji od
starega srednjega, se srednji zaboj spremeni — novi srednji je tisti, ki stoji tik za starim
srednjim v vrstnem redu po teži.

Podobno bi lahko razmǐsljali tudi v primerih, ko je bilo prej izbranih liho mnogo
zabojev in se jim pridruži še eden; in spet podobno tudi v primerih, ko neki zaboj
izpade iz množice izbranih zabojev. Če si predstavljamo izbrane zaboje urejene po teži,
se to, kateri zaboj je srednji, vedno spreminja le po malem, za en zaboj naprej ali nazaj
po tem vrstnem redu.

V gornjem razmisleku smo tudi videli, da je koristno vedeti, ali je novi zaboj (ki
ga dodajamo med izbrane) lažji ali težji od (dosedanjega) srednjega po teži. Ker nam
podprogrami, ki nam jih daje naloga na razpolago za delo z zaboji, omogočajo primerjati
zaboje po teži le tako, da primerjamo neki zaboj iz dvorane A z najtežjim zabojem
dvorane B ali z najlažjim zabojem dvorane C, bo torej koristno, če poskrbimo, da bo
eden od slednjih dveh ravno srednji zaboj po teži (med izbranimi).

Na misel nam torej lahko pride, da bi hranili neizbrane zaboje v dvorani A, izbrane
zaboje pa v dvoranah B in C, in sicer naj B vsebuje srednji zaboj po teži in vse tiste, ki
so lažji od njega, dvorana C pa naj vsebuje vse (izbrane) zaboje, ki so težji od srednjega.
Ko se neki zaboj spremeni iz neizbranega v izbranega, ga lahko primerjamo s srednjim
zabojem po teži (s funkcijo JeLazjiB) in se na podlagi tega odločimo, ali ga bomo poslali
v dvorano B ali C. Po tej spremembi se lahko izkaže, da je v eni ali drugi dvorani preveč
zabojev: če imamo izbranih m zabojev, jih mora biti ⌈m/2⌉ v dvorani B ter ⌊m/2⌋

Rešitve nalog šolskega tekmovanja, stran 7/9

v dvorani C.3 Če jih je v dvorani B preveč, moramo premakniti najtežji zaboj iz B
v C (kjer postane najlažji zaboj), če pa je preveč zabojev v C, moramo najlažjega iz C
premakniti v B (kjer to postane najtežji zaboj).4

Z dosedanjim razmislekom smo že rešili lažjo različico naloge, pri kateri se zabojem
stanje spreminja le iz neizbranega v izbrano. Malo več dela pa je s spremembami v
obratni smeri. Ko se neki izbrani zaboj spremeni v neizbranega, bi naša dosedanja
rešitev načeloma zahtevala, da ga premaknemo iz dvorane B oz. C (v katerikoli od njiju
se je pač tedaj nahajal) v dvorano A (potem pa lahko spet primerno

”
uravnotežimo“

dvorani B in C, torej po potrebi premaknemo kak zaboj iz tiste, v kateri jih je zdaj
preveč, v tisto, kjer jih je zdaj premalo). Toda spomnimo se, da iz dvoran B ali C ne
moremo premakniti poljubnega zaboja, pač pa iz B le najtežjega, iz C pa le najlažjega.
Če naš zaboj, ki se je pravkar spremenil iz izbranega v neizbranega, ni tak, ga bomo
morali torej do nadaljnjega pustiti v dvorani, kjer se nahaja; za vsako od dvoran B ali C
bomo morali ločeno šteti, koliko je v njej izbranih in koliko neizbranih zabojev; za vsak
zaboj bomo morali v neki tabeli vzdrževati podatek o tem, ali je izbran ali ne; in ko
se potem želimo ukvarjati z najtežjim zabojem v B (in podobno pri najlažjem zaboju
v C), moramo najprej preveriti, če je ta zaboj sploh še izbran; če ni, je to eden od tistih,
ki bi jih morali že prej premakniti iz B v A, pa tega takrat nismo mogli narediti in ga
moramo premakniti zdaj (v spodnji rešitvi za to skrbi podprogram PospraviNeizbrane, ki
premika zaboje iz B v A, dokler ni najtežji v B eden od izbranih zabojev, ter iz C v A,
dokler ni najlažji v C eden od izbranih zabojev).

Čeprav zahteva naloga le opis postopka, si za primer vseeno oglejmo tudi implemen-
tacijo te rešitve v C++:

#include <vector>
using namespace std;

enum Dvorana { A = 0, B = 1, C = 2 };
// Naslednja vektorja za vsak zaboj povesta, v kateri dvorani se nahaja in ali je izbran.
vector<Dvorana> kje; vector<bool> izbran;
int iB, iC; // število izbranih zabojev v B oz. C
int nB, nC; // število neizbranih zabojev v B oz. C

void Inicializacija(int n)
{

kje.clear(); kje.resize(n, A);
izbran.clear(); izbran.resize(n, false);
nB = 0; nC = 0; iB = 0; iC = 0;

}

void PospraviNeizbrane()
{

// Premikajmo zaboje iz B, dokler je najtežji zaboj B-ja neizbran.
while (nB > 0)

if (int z = PremakniIzB(); ! izbran[z]) −−nB, kje[z] = A;
else { PremakniIzAvB(z); break; }

// Premikajmo zaboje iz C, dokler je najlažji zaboj C-ja neizbran.
while (nC > 0)

if (int z = PremakniIzC(); ! izbran[z]) −−nC, kje[z] = A;
else { PremakniIzAvC(z); break; }

}

int SpremeniStanje(int z)
{

izbran[z] = ! izbran[z];
if (izbran[z]) {

// Če je z že v eni od dvoran B in C, je treba le popraviti števce.
if (kje[z] == B) { ++iB; −−nB; }

3Zapis ⌈·⌉ pomeni, da rezultat deljenja zaokrožimo navzgor, ⌊·⌋ pa, da ga zaokrožimo navzdol.
4Več kot enega zaboja na ta način ne bo treba premakniti; o tem se lahko prepričamo, če ločeno

obravnavamo štiri primere glede na parnost števila izbranih zabojev in glede na to, ali je novi izbrani
zaboj prǐsel v B ali v C. Podrobnosti prepuščamo bralcu za vajo.

Rešitve nalog šolskega tekmovanja, stran 8/9

else if (kje[z] == C) { ++iC; −−nC; }
// Sicer ga moramo premakniti iz A v eno od dvoran B in C.
else if (iB + nB > 0 && JeLazjiOdB(z)) { PremakniIzAvB(z); ++iB; kje[z] = B; }
else { PremakniIzAvC(z); ++iC; kje[z] = C; } }

else {
// Če je z postal neizbran, ostane zaenkrat v svoji dvorani (B ali C),
// mi pa le popravimo števca izbranih in neizbranih zabojev te dvorane.
if (kje[z] == B) { −−iB; ++nB; }
else { −−iC; ++nC; } }

// Uravnotežimo dvorani B in C.
int stIzbranih = iB + iC;
int ciljB = (stIzbranih + 1) / 2; // Toliko izbranih bi moralo biti v B.
if (iB > ciljB) {

PospraviNeizbrane();
int z = PremakniIzB(); −−iB;
PremakniIzAvC(z); kje[z] = C; ++iC;}

else if (iB < ciljB) {
PospraviNeizbrane();
int z = PremakniIzC(); −−iC;
PremakniIzAvB(z); kje[z] = B; ++iB; }

// Najtežji zaboj v B je zdaj srednji izbrani po teži.
if (iB == 0) return −1;
PospraviNeizbrane();
int srednji = PremakniIzB(); PremakniIzAvB(srednji); return srednji;

}

Rešitve nalog šolskega tekmovanja, stran 9/9

21. srednješolsko tekmovanje ACM v znanju računalnǐstva

Šolsko tekmovanje

23. januarja 2026

NASVETI ZA MENTORJE
O IZVEDBI TEKMOVANJA IN OCENJEVANJU

Tekmovalci naj pǐsejo svoje odgovore na papir ali pa jih natipkajo z računalnikom; oce-
njevanje teh odgovorov poteka v vsakem primeru tako, da jih pregleda in oceni mentor
(in ne npr. tako, da bi se poskušalo izvorno kodo, ki so jo tekmovalci napisali v svo-
jih odgovorih, prevesti na računalniku in pognati na kakšnih testnih podatkih). Čas
reševanja je omejen na 180 minut.

Nekatere naloge kot odgovor zahtevajo program ali podprogram v kakšnem konkre-
tnem programskem jeziku, nekatere naloge pa so tipa

”
opǐsi postopek“. Pri slednjih je

načeloma vseeno, v kakšni obliki je postopek opisan (naravni jezik, psevdokoda, diagram
poteka, izvorna koda v kakšnem programskem jeziku, ipd.), samo da je ta opis dovolj
jasen in podroben in je iz njega razvidno, da tekmovalec razume rešitev problema.

Glede tega, katere programske jezike tekmovalci uporabljajo, naše tekmovanje ne
postavlja posebnih omejitev, niti pri nalogah, pri katerih je rešitev v nekaterih jezikih
znatno kraǰsa in enostavneǰsa kot v drugih (npr. uporaba perla ali pythona pri problemih
na temo obdelave nizov).

Kjer se v tekmovalčevem odgovoru pojavlja izvorna koda, naj bo pri ocenjevanju
poudarek predvsem na vsebinski pravilnosti, ne pa na sintaktični. Pri ocenjevanju na
državnem tekmovanju zaradi manjkajočih podpičij in podobnih sintaktičnih napak od-
bijemo mogoče kvečjemu eno točko od dvajsetih; glavno vprašanje pri izvorni kodi je,
ali se v njej skriva pravilen postopek za rešitev problema. Ravno tako ni nič hudega, če
npr. tekmovalec v rešitvi v C-ju pozabi na začetku #includeati kakšnega od standardnih
headerjev, ki bi jih sicer njegov program potreboval; ali pa če podprogram main() napǐse
tako, da vrača void namesto int.

Pri vsaki nalogi je možno doseči od 0 do 20 točk. Od rešitve pričakujemo predvsem
to, da je pravilna (= da predlagani postopek ali podprogram vrača pravilne rezultate),
poleg tega pa je zaželeno tudi, da je učinkovita (manj učinkovite rešitve dobijo manj
točk).

Če tekmovalec pri neki nalogi ni uspel sestaviti cele rešitve, pač pa je prehodil vsaj
del poti do nje in so v njegovem odgovoru razvidne vsaj nekatere od idej, ki jih rešitev
tiste naloge potrebuje, naj vendarle dobi delež točk, ki je približno v skladu s tem,
kolikšen delež rešitve je našel.

Če v besedilu naloge ni drugače navedeno, lahko tekmovalčeva rešitev vedno predpo-
stavi, da so vhodni podatki, s katerimi dela, podani v takšni obliki in v okviru takšnih
omejitev, kot jih zagotavlja naloga. Tekmovalcem torej načeloma ni treba pisati rešitev,
ki bi bile odporne na razne napake v vhodnih podatkih.

Če oblika vhodnih podatkov ni natančno določena, si lahko podrobnosti tekmovalec
izbere sam. Na primer, če naloga pravi, da dobimo seznam parov, je to lahko v praksi
tabela (array), vektor, linked list ali še kaj drugega, pari pa so lahko bodisi strukture,
ki jih je deklarirala tekmovalčeva rešitev, ali pa kaj iz standardne knjižnice (kot je pair

v C++ ali tuple v pythonu).
V nadaljevanju podajamo še nekaj nasvetov za ocenjevanje pri posameznih nalogah.

1. Napredek

• Za vse točke pričakujemo rešitev s časovno zahtevnostjo O(n). Za drobne ne-
učinkovitosti znotraj te časovne zahtevnosti naj se ne odšteva točk (npr. v naši
pythonovski rešitvi bi lahko mesto1 bil slovar namesto seznama).

Navodila za ocenjevanje, stran 1/5

• Rešitve s časovno zahtevnostjo O(n log n) naj dobijo največ 15 točk, tiste s časovno
zahtevnostjo O(n2) pa največ 10 točk, če so sicer pravilne.

• Glede rezultatov je dovolj, če program nekako vrne ali izpǐse, kateri tekmovalec je
najbolj napredoval; ni treba izpisati, za koliko mest je napredoval.

• Če bi kakšna rešitev pomotoma računala, kateri je najbolj nazadoval namesto
najbolj napredoval, naj se ji zaradi tega odšteje dve točki.

• Ni se težko prepričati, da gotovo obstaja vsaj en tekmovalec, ki je na drugi tekmi
uvrščen vsaj tako visoko kot na prvi. Rešitev se sme opirati na to dejstvo (npr.
pri inicializaciji kakšne spremenljivke, preden začne iskati tekmovalca z največjim
napredkom), ne da bi ga posebej utemeljila.

2. Tabela medalj

• Pri tej nalogi poudarek ni na učinkovitosti rešitve, saj besedilo posebej pravi, da
je držav in medalj razmeroma malo. Če je v podatkih omenjenih d različnih držav,
sme rešitev (za vse točke) porabiti O(d) časa za vsako prebrano medaljo (npr. ker
hrani zapise o državah v seznamu, ki ga mora preiskati po vrsti, da najde zapis za
pravo državo; primer tega je naša rešitev v C++) in O(d2) časa za urejanje držav
v pravi vrstni red (npr. morda si bo kak tekmovalec napisal svojo improvizirano
različico urejanja z izbiranjem ali kaj podobnega).

• Naši dve rešitvi za določanje širine stolpcev z medaljami najprej poǐsčeta največjo
vrednost v vsakem stolpcu, nato pa izračunata, koliko znakov dolg niz nastane iz
te vrednosti. Za enako dobro naj šteje tudi rešitev, ki pretvori vsako vrednost v
niz in si zapomni dolžino najdalǰsega izmed tako dobljenih nizov.

• Če se več držav ujema v številu medalj vseh treh barv, je vseeno, v kakšnem
vrstnem redu so urejene (ni treba, da so npr. po imenu ali kaj podobnega). Če pa
bi kakšna rešitev uredila države le padajoče po številu zlatih medalj, pozabila pa
bi, da je treba tiste z enakim številom zlatih urediti padajoče po številu srebrnih
(in če je treba, tudi po bronastih), naj se ji zaradi tega odšteje tri točke.

• Besedilo naloge pravi, da stolpci ne smejo biti širši, kot je treba. Če se kakšna
rešitev ne bi trudila izračunati širine stolpcev, ampak bi zanje postavila neko
vnaprej določeno dovolj veliko širino (npr. iz besedila naloge vidimo, da je za imena
držav dovolj 20 znakov, za število medalj pa največ 4 znaki), naj se ji zaradi tega
odšteje 5 točk.

• Rešitvi, ki med stolpci pozabi izpisati presledek, naj se zaradi tega odšteje dve
točki.

• Naši rešitvi sta si za poravnavanje stolpcev pri izpisu pomagali z I/O-manipulatorji
v C++ in s formatted string literali v pythonu. Za enako dobro naj šteje tudi,
če bi rešitev sama poskrbela za izpis primernega števila presledkov na primernem
mestu (in jih npr. izpisovala v zanki).

3. Okrožnica

• Besedilo naloge pravi, da je učiteljev, razredov itd. malo, zato pri tej nalogi po-
udarek ni na učinkovitosti rešitve. Naši dve rešitvi na primer predelata seznam
učiteljev, ki se jim izogibamo, v tabelo logičnih vrednosti ali pa v množico, kar nam
omogoča, da v O(1) časa preverimo, ali se nekemu učitelju izogibamo ali ne. Če bi
kakšna rešitev namesto tega šla vsakič znova (pri vsakem zapisu na urniku) v zanki
po seznamu in preverjala, ali je učitelj s trenutnega zapisa prisoten v seznamu, naj
se ji zaradi te neučinkovitosti odšteje 1 točko. Ravno tako naj se odšteje 1 točko
rešitvi, ki bi predpostavila, da kot vhodni podatek že dobi množico učiteljev, ki se
jim je treba izogibati, in ne seznama oz. zaporedja (kot pravi naloga).

Navodila za ocenjevanje, stran 2/5

• Če bi kakšna rešitev za preverjanje tega, ali je neki razred že obvestila ali ne,
porabila po več kot O(1) časa, naj se ji zaradi tega odšteje 1 točko. (Primer bi
bila npr. rešitev, ki si pripravlja seznam že obiskanih razredov namesto tabele
logičnih vrednosti ali množice; ali pa rešitev, ki se vsakič z zanko zapelje po doslej
sestavljenem razporedu obiskov).

• Naloga ne zahteva, naj bo razpored obiskov, ki ga vrne tekmovalčeva rešitev, v
kakšnem posebnem vrstnem redu (npr. urejen po času).

• Rešitev sme predpostaviti, da so zapisi v urniku, ki ga dobi kot vhodni podatek, na
neki način urejeni (npr. po času), čeprav od tega sicer ni nobene posebne koristi.

• Naši dve rešitvi kot razpored obiskov pripravita seznam parov oblike ⟨učilnica,
ura⟩, za enako dobro pa naj velja tudi rešitev, ki vrne seznam parov oblike ⟨razred,
ura⟩ ali pa kar seznam primernih zapisov iz urnika, ki ga je dobila kot vhodni
podatek.

• Naloga posebej poudarja, da smemo obiskati posamezni razred največ enkrat.
Rešitvam, ki obǐsčejo kak razred po večkrat, naj se zaradi tega odšteje štiri točke.

• Rešitvam, ki obǐsčejo kakšnega od učiteljev, ki bi se jim morale izogibati, naj se
zaradi tega odšteje štiri točke.

• Rešitvam, ki ne preverijo, ali so uspele obiskati vse razrede (in zato morda vrnejo
neki neveljaven razpored, ki obǐsče nekaj razredov, ne pa vseh), naj se zaradi tega
odšteje tri točke.

4. Tridimenzionalni labirint

• V našem primeru rešitve smo labirint predstavili z enodimenzionalno tabelo logič-
nih vrednosti; enako dobro je seveda lahko tudi kaj drugega, npr. tridimenzionalna
tabela ali pa celo množica praznih kockic ipd. Lahko bi tudi uporabili tabelo
velikosti 100 × 100 × 100, kar je pri tej nalogi največji možni labirint, in bi bila
pač pri manǰsih labirintih delno neizkorǐsčena.

• Podobno je tudi vseeno, ali rešitev za označevanje že obiskanih kockic uporablja
tabelo (kot naša C++ovska rešitev) ali množico celih števil (kot naša pythonovska
rešitev) ali celó množico trojic (x, y, z). Če pa bi rešitev uporabila tu kakšno
posebej neučinkovito podatkovno strukturo, pri kateri bi preverjanje, ali je bila
kockica že obiskana, vzelo več kot O(1) časa, naj se ji zaradi tega odšteje dve
točki.

• Namesto iskanja v širino si lahko si predstavljamo rešitev, ki z rekurzijo pregleduje
vse možne poti iz začetne kockice. Težava je, da je (če so v labirintu cikli) takšnih
poti lahko eksponentno mnogo, zato je lahko ta rešitev zelo neučinkovita. Takšne
rešitve naj dobijo največ 15 točk, če so drugače pravilne.

• Če pa bi takšna rešitev morda pozabila preveriti, ali je v neki kockici že bila na
nekem zgodneǰsem koraku poti (torej v nekem nadrejenem rekurzivnem klicu), in
bi se zaradi tega na nekaterih labirintih lahko zaciklala, naj dobi največ 13 točk.
(To je namreč potem pravzaprav rešitev lažje različice naloge, omenjene na koncu
besedila naloge.)

5. Skladǐsče

• Ta naloga je za šolsko tekmovanje razmeroma težka in ne moremo pričakovati,
da bodo tekmovalci pravilno poskrbeli za prav vse podrobnosti, sploh ker neka-
tere od njih verjetno opazimo šele, če rešitev implementiramo in preizkusimo na
računalniku. Zanimata nas predvsem (1) ideja, da v dvorani B hranimo zaboje,
lažje od srednjega, v dvorani C pa zaboje, težje od srednjega (srednji zaboj lahko

Navodila za ocenjevanje, stran 3/5

potem načeloma hranimo v katerikoli od njiju; naša rešitev ga hrani v B, lahko pa
bi ga tudi v C, če bi temu primerno prilagodili rešitev), in da zaboje po potrebi
primerno prerazporejamo med dvoranama; in (2) ideja, da zaboje, ki so postali
neizbrani,

”
leno“ premikamo iz dvoran B in C nazaj v A, torej šele takrat, ko tak

zaboj postane najtežji v B ali najlažji v C. Lažja različica naloge (za 13 točk od
20), ki jo omenja zadnji odstavek besedila, zahteva le idejo (1).

• Naloga pravi, naj operaciji JeLazjiOdB in JeLazjiOdC izvedemo čim manjkrat. Za
vse točke pričakujemo, da rešitev izvede v povprečju O(1) teh operacij na vsako
spremembo stanja zaboja; z drugimi besedami, povprečno število teh operacij
na vsako spremembo stanja zaboja mora biti navzgor omejeno z neko konstanto,
neodvisno od n. (Naša uradna rešitev izvede največ eno tako operacijo pri spre-
membi neizbranega zaboja v izbranega, pri obratni spremembi pa sploh nobene.)
Rešitve, ki izvedejo več kot O(1) takšnih operacij, naj dobijo največ 8 točk, če
so drugače pravilne. Primer takšne rešitve dobimo, če opazimo, da če imamo vse
zaboje ves čas v dvorani A, lahko dva zaboja, recimo u in v, primerjamo po teži
takole: PremakniIzAvB(v); bool b = JeLazjiOdB(u); PremakniIzB(). Po teh treh stavkih
nam b pove, ali je zaboj u lažji od zaboja v. Ko znamo tako primerjati poljubna
dva zaboja po teži, lahko vzdržujemo npr. urejen seznam izbranih zabojev, vanj
na primerno mesto vrivamo zaboje, ko postanejo izbrani, ali jih iz njega brǐsemo,
ko prenehajo biti izbrani, in zlahka vidimo, kateri je srednji po teži. Toda takšna
rešitev uporabi po vsaki spremembi stanja O(n) primerjav (klicev JeLazjiOdB); to
lahko zmanǰsamo na O(log n), če pri ugotavljanju, kam v seznamu je treba vriniti
nov zaboj, uporabimo bisekcijo, ali pa če izbrane zaboje namesto v urejenem se-
znamu hranimo v kakšni drevesasti podatkovni strukturi, v vsakem primeru pa je
to več od O(1).

• Primer podrobnosti, ki jih človek pri tej nalogi zlahka spregleda in ki morda v
rešitvi niti ne pridejo do izraza, če pǐsemo le opis postopka in ne implementacije:

– Morda pustimo pri uravnoteževanju dvoran B in C (da je v vsaki od njiju
pravo število izbranih zabojev) v kakšni od njiju en izbran zaboj preveč ali
premalo.

– Ko pride nov izbran zaboj, ga morda primerjamo z najtežjim iz B, ne da bi
se prej prepričali, da B ni prazna.

– Morda vrnemo najtežji zaboj iz B v prepričanju, da je to srednji po teži med
izbranimi zaboji, pa se prej nismo prepričali, ali je ta zaboj sploh izbran
(lahko je to eden od zabojev, ki niso več izbrani, pa jih še nismo utegnili
premakniti iz B nazaj v A).

– Ko neki zaboj postane izbran, ga morda vedno poskušamo premakniti iz A
v B ali C, pri tem pa pozabimo na možnost, da je ta zaboj lahko že v B
ali C (ker je bil nekoč prej izbran, potem pa je postal neizbran in ga odtlej
še nismo uspeli premakniti v A).

Za takšne drobne napake se morda lahko odšteva po eno točko, ni pa mǐsljeno, da
bi se zaradi tega bistveno spremenilo število točk, ki jih je rešitev sicer dobila (če
jih je) zaradi pravilne ideje.

Navodila za ocenjevanje, stran 4/5

Težavnost nalog

Državno tekmovanje acm v znanju računalnǐstva poteka v treh težavnostnih skupinah
(prva je najlažja, tretja pa najtežja); na tem šolskem tekmovanju pa je skupina ena
sama, vendar naloge v njej pokrivajo razmeroma širok razpon zahtevnosti. Za občutek
povejmo, s katero skupino državnega tekmovanja so po svoji težavnosti primerljive po-
samezne naloge letošnjega šolskega tekmovanja:

Kam bi sodila po težavnosti
Naloga na državnem tekmovanju acm

1. Napredek lažja do srednja naloga v prvi skupini
2. Tabela medalj srednja do težja naloga v prvi ali lažja v drugi skupini
3. Okrožnica težja naloga v prvi ali lažja v drugi skupini
4. Labirint srednje težka naloga v drugi ali lažja v tretji skupini
5. Skladǐsče težka naloga v drugi ali srednja v tretji skupini

Če torej na primer neki tekmovalec reši le eno ali dve lažji nalogi, pri ostalih pa ne naredi
(skoraj) ničesar, to še ne pomeni, da ni primeren za udeležbo na državnem tekmovanju;
pač pa je najbrž pametno, če na državnem tekmovanju ne gre v drugo ali tretjo skupino,
pač pa v prvo.

Podobno kot preǰsnja leta si tudi letos želimo, da bi čim več tekmovalcev s šolskega
tekmovanja prǐslo tudi na državno tekmovanje in da bi bilo šolsko tekmovanje predvsem
v pomoč tekmovalcem in mentorjem pri razmǐsljanju o tem, v kateri težavnostni skupini
državnega tekmovanja naj kdo tekmuje.

Zadnja leta na državnem tekmovanju opažamo, da je v prvi skupini izrazito veliko
tekmovalcev v primerjavi z drugo in tretjo, med njimi pa je tudi veliko takih z zelo
dobrimi rezultati, ki bi prav lahko tekmovali tudi v kakšni težji skupini. Mentorjem
zato priporočamo, naj tekmovalce, če se jim zdi to primerno, spodbudijo k udeležbi v
zahtevneǰsih skupinah.

Navodila za ocenjevanje, stran 5/5

