21. srednjesolsko tekmovanje ACM v znanju racunalnistva

Solsko tekmovanje

23. januarja 2026

NASVETI ZA TEKMOVALCE

Naloge na tem Solskem tekmovanju pokrivajo Sirok razpon tezavnosti, tako da ni nic¢
hudega, ce ne zna$ resiti vseh.

Nekatere naloge so tipa napisi program (ali napisi podprogram), nekatere pa
tipa opiSi postopek. Pri slednjih ti ni treba pisati programa ali podprograma v
kaksnem konkretnem programskem jeziku, ampak lahko postopek opises tudi kako dru-
gace: z besedami (v naravnem jeziku), psevdokodo (glej spodaj), diagramom poteka
itd. Glavno je, da je tvoj opis dovolj natancen, jasen in razumljiv, tako da je iz njega
razvidno, da si dejansko nasel in razumel pot do resitve naloge.

Psevdokodi pravijo véasih tudi strukturirani naravni jezik. Postopek opisemo v
naravnem jeziku, vendar opis strukturiramo na podoben nacin kot pri programskih
jezikih, tako da se jasno vidi strukturo vejitev, zank in drugih programskih elementov.

Primer opisa postopka v psevdokodi: recimo, da imamo zaporedje besed in bi ga
radi razbili na ve¢ vrstic tako, da ne bo nobena vrstica presiroka.

naj bo trenutna vrstica prazen niz;
pregleduj besede po vrsti od prve do zadnje:
¢e bi trenutna vrstica z dodano trenutno besedo (in presledkom
pred njo) postala predolga,
izpiSi trenutno vrstico in jo potem postavi na prazen niz;
dodaj trenutno besedo na konec trenutne vrstice;
Ce trenutna vrstica ni prazen niz, jo izpisi;

(Opomba: samo zato, ker je tu primer psevdokode, to Se ne pomeni, da moras tudi ti
pisati svoje odgovore v psevdokodi.)

Ce pa v okviru neke resitve pises izvorno kodo programa ali podprograma, obvezno
poleg te izvorne kode v nekaj stavkih opisi, kako deluje (oz. naj bi delovala) tvoja resitev
in na kaksni ideji temelji.

Pri ocenjevanju so vse naloge vredne enako stevilo tock. Svoje odgovore dobro utemelji.
Prizadevaj si predvsem, da bi bile tvoje resitve pravilne, ob tem pa je zazeleno, da so tudi
¢im bolj ucinkovite (take dobijo ve¢ tock kot manj ucinkovite). Za manjse sintakti¢ne
napake se naceloma ne odbije veliko tock. Priporocljivo in zazeleno je, da so tvoje
resitve napisane pregledno in ¢itljivo. Ce je na listih, ki jih oddajas, ve¢ razlicic resitve
za kaksno nalogo, jasno oznaci, katera je tista, ki naj jo ocenjevalci upostevajo.

Ce naloga zahteva branje ali obdelavo vhodnih podatkov, lahko tvoja resitev (¢e v nalogi
ni drugac¢e napisano) predpostavi, da v vhodnih podatkih ni napak (torej da je njihova
vsebina in oblika skladna s tem, kar piSe v nalogi).

Nekatere naloge zahtevajo branje podatkov s standardnega vhoda in pisanje na standar-
dni izhod. Za pomot je tu nekaj primerov programov, ki delajo s standardnim vhodom
in izhodom:

e Program, ki prebere s standardnega vhoda dve §tevili in izpiSe na standardni izhod
njuno vsoto:

program BranjeStevil; #include <stdio.h>

var i, j: integer; int main() {

begin int i, j; scanf("%d %d", &i, &j);
ReadLn(i, j); printf("%d + %d = %d\n", i, j, i + j);
Writeln(i, > + 2, j, > = 2, i+]} return 0O;

end. {BranjeStevil} }

Navodila in nasveti za tekmovalce, stran 1/3

e Program, ki bere s standardnega vhoda po vrsticah, jih Steje in prepisuje na standar-
dni izhod, na koncu pa izpiSe Se skupno dolzino:

program BranjeVrstic;
var s: string; i, d: integer;

begin

i:=0;d:=0;

while not Eof do begin
ReadLn(s);
i:=i+4 1;d:=d + Length(s);
WriteLn(i, >. vrstica: "’,s, *"?);

end; {while}

WriteLn(i, > vrstic, ’, d, > znakov.’);

end. {BranjeVrstic}

#include <stdio.h>
#include <string.h>
int main() {
char s[201]; int i = 0,d = 0;
while (gets(s)) {
i++; d += strlen(s);
printf("%d. vrstica: \"%s\"\n", i, s);

printf("%d vrstic, %d znakov.\n", i, d);
return 0;

}

Opomba: C-jevska razli¢ica gornjega programa predpostavlja, da ni nobena vrstica vhodnega
besedila daljsa od dvesto znakov. Funkciji gets se je v praksi bolje izogibati, ker pri njej nimamo
zasCite pred primeri, ko je vrstica dalj$a od nase tabele s. Namesto gets bi bilo bolje (in varneje)
uporabiti fgets ali fscanf; vendar pa za reSitev nasih tekmovalnih nalog zadosc¢a tudi gets.

e Program, ki bere s standardnega vhoda po znakih, jih prepisuje na standardni izhod,
na koncu pa izpiSe Se stevilo prebranih znakov (ne vstevsi znakov za konec vrstice):

program BranjeZnakov;
var i: integer; c: char;
begin
i:=0;
while not Eof do begin
while not Eoln do
begin Read(c); Write(c); i := i + 1 end;
if not Eof then begin ReadlLn; WriteLn end;
end; {while}
WriteLn(’Skupaj ’, i, > znakov.’);
end. {BranjeZnakov}

Se isti trije primeri v pythonu:

Branje dveh Stevil in izpis vsote:
import sys

a, b = sys.stdin.readline().split()

a = int(a); b = int(b)

print "%d + %d = %d" % (a, b, a + b)

Branje standardnega vhoda po vrsticah:
import sys

i=d=0
for s in sys.stdin:

#include <stdio.h>

int main() {
inti =0, c;
while ((c = getchar()) != EOF) {
putchar(c); if (i != >\n’) i++;

printf("Skupaj %d znakov.\n", i);
return 0;

s = s.rstrip(’\n’) # odreZemo znak za konec vrstice

i+=1;d += len(s)
print "%d. vrstica: \"%s\"" % (i, s)
print "%d vrstic, %d znakov." % (i, d)

Branje standardnega vhoda znak po znak:
import sys

i=0
while True:
¢ = sys.stdin.read(1)
if c == "": break # EOF

sys.stdout.write(c)
ifcl="\n:i4+=1
print "Skupaj %d znakov." % i

Navodila in nasveti za tekmovalce, stran 2/3

Se isti trije primeri v javi:

// Branje dveh 3tevil in izpis vsote:
import java.io.*;
import java.util.Scanner;

public class Primerl

{

public static void main(String[] args) throws |OException
{
Scanner fi = new Scanner(System.in);
int i = fi.nextInt(); int j = fi.nextInt();
System.out.println(i + " + "+ j+ " ="+ (i +j));
}
}

// Branje standardnega vhoda po vrsticah:
import java.io.*;

public class Primer2

{

public static void main(String[] args) throws IOException

BufferedReader fi = new BufferedReader(new InputStreamReader(System.in));
inti =0,d=0; String s;
while ((s = fi.readLine()) != null) {
i++; d += s.length();
System.out.printIn(i + ". vrstica: \"" + s+ "\""); }
System.out.printin(i + " vrstic, "+ d + " znakov.");
}
}

// Branje standardnega vhoda znak po znak:
import java.io.*;

public class Primer3

{

public static void main(String[] args) throws IOException

{
InputStreamReader fi = new InputStreamReader(System.in);
inti =0, ¢
while ((c = fi.read()) >=0) {

System.out.print((char) c); if (c != ’\n’> && c!="\r’) i++; }

System.out.printin("Skupaj " + i + " znakov.");

}

}

Navodila in nasveti za tekmovalce, stran 3/3

21. srednjesolsko tekmovanje ACM v znanju racunalnistva

Solsko tekmovanje

23. januarja 2026

NALOGE ZA SOLSKO TEKMOVANJE

Svoje odgovore dobro utemelji. Ce pises izvorno kodo programa ali podprograma,
OBVEZNO tudi v nekaj stavkih z besedami opisi idejo, na kateri temelji tvoja resitev.
Ce ni v nalogi drugace napisano, lahko tvoje resitve predpostavljajo, da so vhodni po-
datki brez napak (da ustrezajo formatu in omejitvam, kot jih podaja naloga). Zazeleno
je, da so tvoje resitve poleg tega, da so pravilne, tudi u¢inkovite (bolj uéinkovite resitve
dobijo ve¢ tock). Nalog je pet in pri vsaki nalogi lahko dobis od 0 do 20 tock.

Resitve bodo objavljene na https://rtk.ijs.si/.

1. Napredek

Podan imamo vrstni red istih tekmovalcev na dveh tekmovanjih. Tekmovalcev je n
in namesto z imeni so predstavljeni z enoli¢nimi Stevilkami od 1 do n. Vsak izmed
tekmovalcev se pojavlja v obeh vrstnih redih. Primer:

prvo tekmovanje: 4,2,1,3,5
drugo tekmovanje: 4,5,2,1,3

Napisi program, ki bo izracunal, kdo je med prvim in drugim tekmovanjem najbolj
napredoval (ima najvecjo razliko med uvrstitvama). V gornjem primeru je to tekmovalec
s stevilko 5, ki je napredoval za tri mesta. Ce je moznih odgovorov vec, je vseeno,
katerega od njih izpises. Tvoja resitev naj bo ucinkovita, da bo delovala hitro tudi za
velike n. Podrobnosti tega, v kaksni obliki dobi tvoj program vhodne podatke in kako
vrne ali izpiSe rezultate, si izberi sam in jih v svoji resitvi tudi opisi.

Naloge za Solsko tekmovanje, stran 1/4

2. Tabela medalj

Dan je seznam medalj, ki so jih dobile razlicne drzave na nekem mednarodnem tekmo-
vanju. V vsaki vrstici je najprej ime drzave, nato pa barva medalje (zlato, srebro
ali bron). Da bo naloga lazja, predpostavimo, da so imena drzav le enobesedna, brez
presledkov. Primer vhoda:

Kitajska zlato
VB bron
Francija srebro
VB zlato

Napisi program, ki prebere tak seznam in izpise tabelo, v kateri bo po ena vrstica
za vsako drzavo, v tej vrstici pa bodo ime drzave in Stevilo medalj (zlatih, srebrnih,
bronastih in vseh skupaj). Med stolpci naj bo po en presledek; imena drzav naj bodo
poravnana levo, medalje pa desno. Posamezni stolpec naj ne bo §irsi, kot je treba (glede
na podatke v njem). Drzave naj bodo urejene padajoce po Stevilu zlatih medalj; tiste
z enakim S$tevilom zlatih naj bodo urejene padajoce po Stevilu srebrnih; tiste, ki se
ujemajo tako v Stevilu zlatih kot v Stevilu srebrnih, pa naj bodo urejene padajoce po
Stevilu bronastih. Primer taksnega izpisa:

ZDA 40 44 42 126
Kitajska 40 27 24 91
Japonska 20 12 13 45
Avstralija 18 19 16 53
Francija 16 26 22 64
Nizozemska 15 7 12 34

Predpostavis lahko, da je razliénih drzav manj kot 200, da je vseh medalj skupaj manj
kot 2000 in da so imena drzav dolga kvecjemu 20 znakov. Tvoj program lahko bere s
standardnega vhoda in pise na standardni izhod ali pa bere iz datoteke vhod. txt in pise
v datoteko izhod.txt (karkoli ti je lazje).

3. Okroznica

Ena od obveznosti dezurnega dijaka je, da po Soli raznese okroznico. Prebrati jo mora
vsakemu razredu, ¢as obiska posami¢nega razreda in vrstni red obiskov pa si lahko izbere
poljubno. Pri tem se hoce izogniti obiskovanju ucilnic, v katerih poucujejo nekateri
ucitelji, saj ima z njimi slabe izkusnje.

Napisi program (ali podprogram oz. funkcijo), ki bo sprejel podatke o Solskem
urniku za en dan (torej v kateri uéilnici so posamiéni razredi in uéitelji vsako Solsko uro)
ter seznam uciteljev, ki se jih hotemo izogniti. Program oz. podprogram naj pripravi
razpored obiskovanja razredov, s katerim se ne oglasimo pri nobenem nezelenem ucitelju,
ali pa ugotovi, da taksen razpored ne obstaja. Stevilo obiskov na Solsko uro ni omejeno.
Posamezen razred smemo obiskati najve¢ enkrat.

Predpostavis lahko, da so ucitelji, razredi, uc¢ilnice in Solske ure predstavljene z majh-
nimi naravnimi stevili (recimo od 1 do 100), ne npr. z imeni ali kak$nimi drugimi bolj
zapletenimi oznakami. Urnik je podan kot zaporedje ¢etveric oblike (u,r, p, t), ki povedo,
da ucitelj u poucuje razred r v uéilnici p na t-to Solsko uro dneva. Podrobnosti tega,
v kaksni obliki tvoj (pod)program dobi vhodne podatke in vrne ali izpiSe rezultate, si
izberi sam in jih v svoji resitvi tudi opisi.

Naloge za Solsko tekmovanje, stran 2/4

4. Tridimenzionalni labirint

Rok se je navelical resevanja labirintov, objavljenih v ¢asopisih, in je presedlal na tridi-
menzionalne. Labirint je torej kvader, sestavljen iz A x B x C enotskih kockic, vsaka
pa je lahko bodisi prazna bodisi zid. Stevila A, B in C' so manjsa ali enaka 100.
Polozaj posamezne kockice v labirintu lahko opisemo s trojico koordinat (z,y, z), kjer
jexe{0,....,A—-1},y€{0,...,.B—1} in z € {0,...,C — 1}. Po labirintu se lahko
premikas tako, da gres iz ene kockice v drugo, ¢e sta obe prazni in imata skupno ploskev.
Kockica je izhod iz labirinta, ¢e s kaksno od svojih ploskev meji na zunanjost kvadra
(labirinta).

Opisi postopek (ali napisi podprogram oz. funkcijo, ce ti je lazje), ki dobi opis
labirinta in zacetne koordinate, vrne pa koordinate najblizjega in najbolj oddaljenega
dosegljivega izhoda. (Ce je moznih ve¢ resitev, je vseeno, katero od njih vrne.) Pri tem
se seveda oddaljenost do izhoda meri kot dolzina najkrajse poti od zacetnega polozaja
do tistega izhoda; dolzina poti po labirintu pa je definirana kot Stevilo korakov na
njej (Stevilo premikov iz ene kockice v sosednjo kockico). Ce pises podprogram, si
podrobnosti tega, v kaksni obliki tvoj podprogram dobi vhodne podatke in kako vrne
ali izpiSe rezultate, izberi sam in jih v svoji resitvi tudi opisi.

Ce ti je naloga pretezka, jo lahko za 13 tock od 20 resis z dodatno predpostavko,
da v labirintu ni ciklov — z drugimi besedami, da je mogoce od ene prazne kockice do
druge priti po kve¢jemu eni poti, nikoli po dveh ali ve¢ razli¢nih poteh.

5. Skladisce

Neko podjetje ima v skladis¢u n zabojev (zaboji so osteviléeni od 0 do n — 1). Zaboji
so razlicno tezki (nobena dva nista enako tezka), vendar do njihovih tez ne moremo
neposredno dostopati.

Posamezni zaboj je v posameznem trenutku v enem od dveh moznih stanj: izbran
ali neizbran. Podjetje bi rado po vsaki spremembi stanja vedelo, kateri zaboj je zdaj
srednji po tezi med vsemi izbranimi zaboji. ,,Srednji po tezi“ pomeni naslednje: ce je
izbranih 2k ali 2k — 1 zabojev, potem je srednji po tezi tisti, ki je k-ti najlazji med njimi.
(Na primer: ¢e je izbranih 7 ali 8 zabojev, je srednji po tezi Getrti najlazji med njimi; ce
je izbranih 9 ali 10 zabojev, je srednji po tezi peti najlazji med njimi; in tako naprej.)

Skladisce je razdeljeno na tri dvorane: A, B in C. V vsaki dvorani je dovolj prostora za
vse zaboje. Na voljo imas naslednje podprograme za premikanje zabojev med dvoranami
in primerjanje zabojev po tezi:

e PremaknilzAvB(z) — premakne zaboj s §tevilko z iz dvorane A v dvorano B;

e PremaknilzAvC(z) — premakne zaboj s Stevilko z iz dvorane A v dvorano C;

e PremaknilzB() — premakne iz dvorane B najtezji zaboj (izmed vseh, ki so takrat v
dvorani B) v dvorano A in vrne §tevilko tega zaboja;

e PremaknilzC() — premakne iz dvorane C najlaZji zaboj (izmed vseh, ki so takrat v
dvorani C) v dvorano A in vrne §tevilko tega zaboja;

e JelazjiOdB(z) — zaboj z mora biti iz dvorane A; funkcija vrne logi¢no vrednost, ki
pove, ali je zaboj z lazji od najtezjega zaboja dvorane B ali ne;

e JelazjiOdC(z) — zaboj z mora biti iz dvorane A; funkcija vrne logi¢no vrednost, ki
pove, ali je zaboj z lazji od najlazjega zaboja dvorane C ali ne.

Teh podprogramov torej ne pises ti, ampak predpostavi, da ze obstajajo in da jih lahko
poklices iz svoje kode. Ce podas gornjim podprogramom kot parameter z neki zaboj,
ki se takrat ne nahaja v dvorani A, se bo tvoj program sesul; enako tudi, ¢e pokli¢es
PremaknilzB ali JeLazjiB takrat, ko je dvorana B prazna, ali pa ¢e poklices PremaknilzC ali
JelLazjiC takrat, ko je dvorana C prazna.

Se enkrat poudarimo, da z zaboji ne mores delati drugace kot tako, da kliées gornje
podprograme.

Opisi, kako bi implementiral naslednja podprograma (oz. funkciji), ki bosta poma-
gala podjetju delati z izbranimi zaboji:

Naloge za Solsko tekmovanje, stran 3/4

e |Inicializacija(n) — sistem ga bo poklical na zacetku izvajanja, da si lahko inicializiras
morebitne globalne spremenljivke in podobne stvari; kot parameter dobi Stevilo
zabojev n.

e SpremembaStanja(z) — sistem ga bo poklical, ko je treba zaboju z spremeniti stanje
(iz izbranega v neizbranega ali obratno). Funkcija naj vrne Stevilko zaboja, ki je
(po spremembi) srednji po tezi med izbranimi zaboji. Ce po spremembi ni izbran
noben zaboj, naj funkcija vrne —1.

Poleg teh dveh podprogramov lahko tvoja reSitev deklarira in uporablja tudi svoje glo-
balne spremenljivke in pomozne podprograme. Ce ti je lazje, lahko namesto opisa po-
stopka napiSes implementacijo v kaksnem konkretnem programskem jeziku (je pa s tem
pri tej nalogi razmeroma dosti dela).

Predpostavi, da se na zacCetku izvajanja nahajajo vsi zaboji v dvorani A in da ni
noben zaboj izbran. Operaciji JeLazjiOdB in JelLazjiOdC sta dragi, zato je pomembno, da
ju uporabis ¢im manjkrat.

Ce ti je naloga pretezka, lahko za 13 tock od 20 resis lazjo razlicico, pri kateri se
zabojem stanje spreminja le iz neizbranega v izbrano, nikoli pa obratno (ko je torej
zaboj enkrat izbran, odtlej vedno ostane izbran).

Naloge za Solsko tekmovanje, stran 4/4

21. srednjesolsko tekmovanje ACM v znanju racunalnistva

Solsko tekmovanje

23. januarja 2026

RESITVE NALOG SOLSKEGA TEKMOVANJA

1. Napredek

Ker so tekmovalci predstavljeni s stevilkami namesto z imeni, lahko stevilko tekmovalca
uporabimo kot indeks v tabelo ali vektor. Najprej v zanki preberimo vrstni red s prvega
tekmovanja in si v neki tabeli (v spodnji resitvi je to mestol) za vsakega tekmovalca
zapiSimo, na katerem mestu je bil (to je ravno Stevec zanke, s katero beremo tekmovalce).
Nato v Se eni zanki berimo vrstni red z drugega tekmovanja; pri vsakem prebranem
tekmovalcu vemo, na katerem mestu je v tem drugem vrstnem redu, v prej omenjeni
tabeli pa imamo podatek o tem, na katerem mestu je bil v prvem vrstnem redu. Tako
ni tezko izracunati razlike med obema uvrstitvama, to pa je napredek opazovanega
tekmovalca. Imejmo Se dve spremenljivki, ki povesta najvecji doslej najdeni napredek
(maxNapredek) in Stevilko tekmovalca, ki je ta napredek dosegel (maxKdo); pri vsakem
novem tekmovalcu poglejmo, ¢e je njegov napredek vecji od najvecjega doslej, in ¢e je,
si ga zapomnimo. Na koncu izpisimo stevilko tekmovalca z najvecjim napredkom.

Oglejmo si implementacijo taksne resitve v .C++. Predpostavili bomo, da podatke
dobimo na standardnem vhodu v treh vrsticah; v prvi je n, v preostalih dveh pa sta oba
vrstna reda, pri ¢emer so Stevila locena s presledkom. Tudi rezultat bomo izpisali na
standardni izhod.

#include <iostream>
#include <vector>
using namespace std;

int main()

{
/] Preberimo stevilo tekmovalcev.
int n; cin >> n;

/] Preberimo prvi vrstni red in si za vsakega tekmovalca zapomnimo,
vector<int> mestol(n + 1); // na katerem mestu je bil.
for (inti=0;i<n; ++i) {

int tekmovalec; cin >> tekmovalec;

mestol[tekmovalec] = i; }

// Preberimo drugi vrstni red, sproti ratunajmo napredek vsakega
// tekmovalca in si zapomnimo najboljSega.
int maxNapredek = —1, maxKdo = —1;
for (inti=0;i<n; ++i) {

int tekmovalec; cin >> tekmovalec;

// Za koliko mest je ta tekmovalec napredoval?

int napredek = mestol[tekmovalec] — i

// Ce je to najvedji napredek doslej, si ga zapomnimo.

if (maxKdo < 0 || napredek > maxNapredek)

maxNapredek = napredek, maxKdo = tekmovalec; }

// lzpisimo rezultat.
cout << maxKdo << endl; return 0;

}

Opozorimo $e na dve podrobnosti: za mestol smo alocirali n 4+ 1 elementov dolg vektor,
da bomo lahko kot indekse uporabljali stevilke tekmovalcev, ki gredo od 1 do » namesto
od 0 do n — 1. (Lahko bi namesto tega seveda od Stevilke tekmovalca odsteli 1, preden
jo uporabimo kot indeks v vektor.) Pri racunanju napredka pa pazimo na to, da nizja

Resitve nalog Solskega tekmovanja, stran 1/9

Stevilka mesta pomeni visjo uvrstitev; napredek je torej tem vecji, ¢im bolj se je tekmo-
valcu Stevilka mesta znizala. Zato pri izratunu napredka odstejemo mesto na drugem
tekmovanju od mesta na prvem tekmovanju (in ne obratno).

Oglejmo si se implementacijo taksne resitve v pythonu:

n = int(input()) # Preberimo 3tevilo tekmovalcev.

Preberimo prvi vrstni red in si za vsakega tekmovalca zapomnimo,
mestol = [-1] * (n + 1) # na katerem mestu je bil.
vrstniRed = [int(s) for s in input().split()]
for i in range(n): mestol[vrstniRed[i]] = i;
Preberimo drugi vrstni red.
vrstniRed = [int(s) for s in input().split()]
Za vsakega tekmovalca izralunajmo napredek in si zapomnimo najboljSega.
maxNapredek = —1; maxKdo = —1
for i in range(n):

tekmovalec = vrstniRed[i]

Za koliko mest je ta tekmovalec napredoval?

napredek = mestol[tekmovalec] — i

Ce je to najvedji napredek doslej, si ga zapomnimo.

if maxKdo < 0 or napredek > maxNapredek:

maxNapredek = napredek; maxKdo = tekmovalec

print(maxKdo) # Izpi§imo rezultat.

2. Tabela medalj

Za vsako drzavo bomo vzdrzevali zapis, ki bo vseboval ime drzave, stevilo medalj vsake
barve (zlate, srebrne, bronaste) in skupno stevilo medalj. Vhodne podatke bomo brali v
zanki; pri vsaki prebrani medalji poiséemo zapis za to drzavo (e ga Se nimamo, ga zdaj
dodamo) in v njej poveéamo za 1 §tevec medalj tiste barve ter skupni Stevec medalj.!

Ko pridemo do konca vhodnih podatkov, uredimo zapise o drzavah tako, kot naloga
zahteva za izpis tabele, torej padajoce po stevilu zlatih medalj, drzave z enakim Stevilom
zlatih uredimo padajoce po Stevilu srebrnih in tako naprej. V spodnji resitvi smo upo-
rabili funkcijo sort iz C++ove standardne knjiznice, napisali pa smo svoj primerjalni
operator.

Preden lahko za¢nemo tabelo zares izpisovati, moramo dolociti Sirine stolpcev, kajti
od tega je odvisno, koliko presledkov bo treba vriniti, da bo izpis lepo poravnan. Za prvi
stolpec je treba pogledati, kako dolgo je najdaljse ime kaksne drzave; za ostale stolpce
pa je dovolj, ¢e poiséemo najvecje Stevilo medalj v vsakem stolpcu in prestejemo, koliko
znakov je to Stevilo dolgo, ¢e ga pretvorimo v niz.

Nato gremo lahko Se enkrat v zanki po drzavah in sproti izpisujemo vrstice naSe
tabele. Pri tem pazimo na to, da bodo stolpci primerno §iroki in poravnani (imena
levo, medalje desno). V spodnji resitvi smo si pomagali z I/O manipulatorji iz C+-+ove
standardne knjiznice (left in right za poravnavanje, setw za $irino stolpca).

#include <iostream>
#include <iomanip>
F#include <string>
#include <algorithm>
#include <utility>
#include <vector>
using namespace std;

struct Drzava

{

string ime;

1Ker naloga pravi, da je drzav (in medalj) malo, bo dovolj dobro, ée hranimo zapise o drzavah v
tabeli ali vektorju in se pri vsaki prebrani medalji zapeljemo v zanki po zapisih, da najdemo pravega
(za trenutno drzavo); e pa bi bilo drzav lahko veliko, bi bilo zapise bolje hraniti v slovarju oz. razprseni
tabeli, kjer bi ime drzave uporabljali kot klju¢ (v C++ bi na primer uporabili unordered_map iz standardne
knjiznice).

Resitve nalog Solskega tekmovanja, stran 2/9

int medalje[4]; // zlate, srebrne, bronaste, skupaj
// Spodnji operator primerja zapise glede na vrstni red v izpisu: prej pridejo
// drZave z ve¢& zlatimi medaljami; tiste z enakim $tevilom zlatih se uredi
// padajoce po srebrnih itd.
bool operator < (const Drzava &D) const {
for (int b = 0; b < 3; ++b)
if (medalje[b] != D.medalje[b]) return medalje[b] > D.medalje[b];
return false; }
b
int main()
{
vector<Drzava> drzave;
while (true)

{

// Preberimo naslednjo medaljo.

string ime, barva; cin >> ime >> barva; if (! cin) break;

// Pois¢imo zapis za to drzavo.

int i = 0; while (i < drzave.size() && drzave[i].ime = ime) ++i;

// Ce to drzavo vidimo prvi, zapis zanjo zdaj dodajmo.

if (i == drzave.size()) drzave.push_back({ime, 0, 0, 0, 0});

// Poveajmo $tevec medalj ustrezne barve in skupni Stevec vseh medalj.
~++drzave[i].medalje[barva == "zlato" ? 0 : barva == "srebro" 7 1 : 2];
+-+drzave[i].medalje[3];

}

// Uredimo drzave po medaljah.
sort(drzave.begin(), drzave.end());

// Dolo&imo Sirine stolpcev. Za zaletek v sirine[0] pripravimo dolZino
// najdaljSega imena, v sirine[1..4] pa najve&je stevilo medalj vsake barve in skupaj.
int sirine[5] = {0, 0, 0, 0};
for (auto &D : drzave) {
sirine[0] = max(sirine[0], (int) D.ime.length());
for (int b = 1; b < 5; ++b) sirine[b] = max(sirine[b], D.medalje[b — 1]); }
// 1z najve&jega stevila medalj dolo&imo Sirino stolpca.
for (int b = 1; b < 5; ++b) sirine[b] = to_string(sirine[b]).length();
// lzpisimo tabelo.
for (auto &D : drzave) {
cout << left << setw(sirine[0]) << D.ime << right;
for (int b = 1; b < 5; ++4b) cout << " " << setw(sirine[b]) << D.medalje[b — 1];
cout << endl; }
return 0;

}

Oglejmo si Se primer resitve v pythonu; tu bodo nekatere stvari malo lazje in krajse
kot v C++. Med branjem vhodnih podatkov bomo zapise o drzavah hranili v slovarju
namesto v seznamu, tako da bo zelo enostavno najti pravi zapis (oz. ugotoviti, da ga
Se nimamo). Ko pa z branjem vhodnih podatkov kon¢amo in je treba drzave urediti,
jih bomo predstavili s pari oblike (medalje, ime), pri ¢emer je medalje seznam, ki ima na
prvem mestu Stevilo zlatih medalj, na drugem Stevilo srebrnih itd.; ¢e seznam taksnih
parov uredimo padajoce, bomo dobili toé¢no tak vrstni red, kot ga potrebujemo za izpis
v nasi tabeli.

Za izpis stolpcev s primerno §irino pride prav pythonov mehanizem za formatiranje
nizov s predpono f. Ce bi hoteli na primer spremenljivko x pretvoriti v niz sirine 5 znakov,
bi lahko uporabili f"{x:5}"; e pa Sirine vnaprej ne poznamo in jo imamo v spremenljivki
y, lahko uporabimo f'{x:{y}}". Ce je x niz, bo poravnan levo, ¢e je stevilo, pa desno,
kar je za potrebe nase naloge ravno prav, torej se nam s smerjo poravnavanja ni treba
ukvarjati.

import sys
drzave = {}

Resitve nalog Solskega tekmovanja, stran 3/9

for vrstica in sys.stdin:
ime, barva = vrstica.strip().split()
Ce to drzavo vidimo prvié, zapis zanjo zdaj dodajmo.
if ime not in drzave: drzave[ime] = [0, 0, 0, 0]
barva = 0 if barva == "zlato" else 1 if barva == "srebro" else 2

Povefajmo Stevec medalj ustrezne barve in skupni Stevec vseh medalj.
drzave[ime][barva] += 1; drzave[ime][3] +=1

Uredimo drZave po Stevilu medalj.
drzave = [(medalje, ime) for (ime, medalje) in drzave.items()]
drzave.sort(reverse = True)

Dolo&imo Sirine stolpcev. Za zaletek v sirine[0] pripravimo dolZino
najdaljSega imena, v sirine[1..4] pa najvedje Stevilo medalj vsake barve in skupaj.
sirine = [0] * 5
for (medalje, ime) in drzave:
sirine[0] = max(sirine[0], len(ime))
for b in range(4): sirine[b 4+ 1] = max(sirine[b + 1], medalje[b])
Iz najveljega stevila medalj dolo¢imo Sirino stolpca.
for b in range(1, 5): sirine[b] = len(str(sirine[b]))
Izpisimo tabelo.
for (medalje, ime) in drzave:
sys.stdout.write(f"{ime: {sirine [0]}}")
for b in range(1, 5): sys.stdout.write(f" {medalje[b - 1]:{sirine[b]l}}")
sys.stdout.write("\n")

3. Okroznica

Ker smemo v isti uri obiskati poljubno mnogo razredov, je sestavljanje razporeda pre-
prosto. V zanki pojdimo po zapisih, iz katerih je sestavljen urnik. Ce v zapisu nastopa
kaksen od uciteljev, ki se jim izogibamo, ta zapis presko¢imo. Podobno, ¢e v zapisu na-
stopa kaksen od razredov, ki smo jih v preteklosti Ze obvestili, tudi ta zapis presko¢imo
(saj istega razreda ne smemo obiskati veckrat). Sicer pa nas ni¢ ne ovira, da ne bi tega
razreda obvestili zdaj, torej dodajmo obisk tega razreda to uro v nas razpored. Na
koncu moramo le Se preveriti, ¢e smo uspeli obiskati vse razrede (naceloma bi se lahko
zgodilo, da bi bil neki razred v urniku vedno prisoten skupaj z enim od tistih uciteljev,
ki se jim izogibamo; takSnega razreda ne moremo obvestiti, torej razpored, po kakr§nem
sprasuje naloga, ne obstaja).

Za lazje preverjanje, ali se nekemu ucitelju izogibamo in ali smo neki razred ze
obvestili, bomo vzdrzevali dve tabeli oz. vektorja logi¢nih vrednosti; naloga pravi, da so
ucitelji in razredi predstavljeni s Stevili od 1 do 100, zato lahko rezerviramo tabeli 101
elementov in uporabimo Stevilko ucitelja ali razreda kot indeks vanjo.

Oglejmo si primer implementacije taksne resitve v C++. Spodnja funkcija Pripra-
viRazpored dobi kot vhodne podatke dva vektorja, urnik in izogibajSe (slednji je seznam
Stevilk uciteljev, ki se jim izogibamo), razpored obiskov pa vrne v vektorju razpored.
Funkcija PripraviRazpored vrne logi¢no vrednost, ki pove, ali je ustrezen razpored uspela
pripraviti ali ne.

#include <vector>
using namespace std;

struct Ura { int ucitelj, ucilnica, razred, ura; };
struct Obisk { int ucilnica, ura; };

bool PripraviRazpored(const vector<Ura> &urnik, const vector<int> &izogibajSe,
vector<Obisk> &razpored)
{

// Pripravimo si vektor, kjer za vsakega ucitelja pie, ali se mu izogibamo ali ne.
vector<bool> izogibajSeB(101, false);
for (int ucitelj : izogibajSe) izogibajSeB|ucitelj] = true;

// Preglejmo urnik in pripravimo razpored obiskov.
vector<bool> razredObvescen(101, false); razpored.clear();

Resitve nalog Solskega tekmovanja, stran 4/9

for (auto &U : urnik)
{

if (izogibajSeB[U.ucitelj]) continue;

if (razredObvescen[U.razred]) continue;

// Ta razred $e ni bil obves&en, torej ga obvestimo zdaj.
razredObvescen[U.razred] = true;
razpored.push_back({U.ucilnica, U.ura});

}

// Poglejmo, ali smo uspeli obvestiti vse razrede.
for (auto &U : urnik) if (! razredObvescen[U.razred]) return false;
return true;

}

Oglejmo si Se primer podobne resitve v pythonu. Tokrat bomo namesto tabel logi¢nih
vrednosti uporabili mnozice (pythonov tip set). Poleg mnozice obveséenih razredov bomo
med pregledovanjem urnika pripravili tudi mnozico vseh razredov; na koncu lahko obe
mnozici primerjamo in ¢e sta enaki, vemo, da smo uspeli obvestiti vse razrede, sicer pa
ne. Podprogram PripraviRazpored v spodnji resitvi vrne razpored kot seznam zapisov tipa
Obisk, ¢e pa primernega razporeda ni, vrne None.

from collections import namedtuple
Ura = namedtuple("Ura", ["ucitelj", "ucilnica", "razred", "ura"])
Obisk = namedtuple("0Obisk", ["ucilnica", "ura"])

def PripraviRazpored(urnik: list[Ura], izogibajSe: list[int]) —> list[Obisk]:
Seznam uciteljev, ki se jim izogibamo, predelajmo v mnoZico.
izogibajSe = set(izogibajSe)
Preglejmo urnik in pripravimo razpored obiskov.
razpored = []; obvesceniRazredi = set(); vsiRazredi = set()
for U in urnik:
vsiRazredi.add(U.razred)
if U.ucitelj in izogibajSe: continue
if U.razred in obvesceniRazredi: continue
Tega razreda Se nismo obvestili, torej ga obis¢imo zdaj.
razpored.append(Obisk(U.ucilnica, U.ura))
obvesceniRazredi.add(U.razred)

Preverimo, ali smo obvestili vse razrede.
return razpored if obvesceniRazredi == vsiRazredi else None

4. Tridimenzionalni labirint

Naloga je zelo primerna za resevanje z iskanjem v 8irino. Kockice, dosegljive iz zacetne,
bomo pregledovali po naraséajoci oddaljenosti. Pri tem bomo vzdrzevali vrsto kockic, za
katere ze vemo, da so dosegljive, nismo pa Se pregledali, kako je mogoc¢e pot nadaljevati iz
njih; postopek se zacne s tem, da dodamo v vrsto le zac¢etno kockico. Glavnino postopka
tvori zanka, kjer v vsaki iteraciji vzamemo eno kockico z zacetka vrste in dodamo na
konec vrste tiste njene prazne sosede, ki jih doslej e nismo videli (in dodali v vrsto).
(Potrebovali bomo torej tudi tabelo, v kateri bomo oznac¢evali, katere kockice smo ze
videli in dodali v vrsto; v spodnji resitvi je to zeVidena.) Sosede kockice (x,y,z) so
(z+1,y,2), (z,y£1,2) in (z,y,2 £ 1).

Ko vzamemo kockico iz vrste, lahko tudi preverimo, ¢e je tam izhod, torej ce lezi
na eni od zunanjih ploskev kvadra; to je takrat, ko je ena od koordinat enaka O ali pa
jex=A—-1laliy=B—1ali z=C —1. Ker pregledujemo kockice po naras¢ajoci
oddaljenosti od zacetne, bo prvi izhod, ki ga bomo nasli, tudi najblizji, zadnji najdeni
izhod pa bo najbolj oddaljen od zacetne kockice. Tako si torej ne bo tezko zapomniti
najblizjega in najbolj oddaljenega izhoda.

Oglejmo si primer implementacije te resitve v C++. Polozaj kockice lahko namesto s
trojico koordinat (x,y, z) predstavimo tudi z enim samim §tevilom z- BC'+y-C + z, kar
je prikladno, ker ga lahko potem uporabimo tudi kot indeks v tabelo ali vektor. Spodnji
podprogram uporablja to pri vektorjih jePrazna (ki ga dobi kot parameter; v njem za

Resitve nalog Solskega tekmovanja, stran 5/9

vsako kockico piSe, ali je prazna ali ne) in zeVidena (za oznacevanje, katere kockice smo
ze dodali v vrsto). Nas podprogram vrne logi¢no vrednost, ki pove, ali je iz zacetnega
polozaja sploh dosegljiv kak izhod.

F#include <vector>
#include <queue>
using namespace std;

struct Tocka { int x, y, z; };

bool Labirint(int A, int B, int C,
// jePrazna[x * B * C + y * C + z] pove, ali je kockica (x, y, z) prazna
vector<bool> &jePrazna,
Tocka zacetek, Tocka &najblizjilzhod, Tocka &najboljOddaljenlzhod)

// zeVidena hrani podatke o tem, katere kockice smo med iskanjem v 3irino Ze videli.
vector<bool> zeVidena(A * B * C, false);

// Iskanje v Sirino bomo zaleli pri kockici , zacetek".

int u0 = (zacetek.x * B + zacetek.y) * C + zacetek.z;
zeVidena[u0] = true; queue<int> vrsta; vrsta.emplace(u0);
bool nasellzhod = false;

/] Preis¢imo vse prazne kockice, dosegljive iz zaletnega poloZaja.
while (! vrsta.empty())

{

int u = vrsta.front(); vrsta.pop();
intx=u/(B*C),y=(u/C)%B,z=u%C
// Kockica (x, y, z) je prazna in dosegljiva. Ali je tudi izhod?
if (x == 0 ||y ==0[[z==0[[x=—=A—1[[y==B —1[[z==C— 1){
// Zadnji najdeni izhod bo najbolj oddaljen.
najboljOddaljenlzhod = Tocka{x, y, z};
// Prvi najdeni izhod je tudi najbliZji.
if (! nasellzhod) { nasellzhod = true; najblizjilzhod = Tocka{x, y, z}; } }

// Preglejmo sosede trenutne kockice. Po eni od koordinat se lahko premaknemo za + 1.
for (int dim = 0; dim < 3; ++dim) for (int d = 0; d < 2; ++4d)
{

intxx=x,yy=y,zz=2z; (dm==07xx:dim==17yy:zz) +=2%*d — 1;
/] Kockica (xx, yy, zz) je soseda kockice (x, y, z).
// Ali smo morda padli ven iz kvadra?
if (xx <0 xx>=A|yy<O0]| yy>=B]||zz<0 || zz >= C) continue;
// Ce smo to sosednjo kockico Ze videli ali pa Je zazidana, jo presko¢imo.
intv=(xx*B+yy)*C+ zz
if (! jePrazna|v] || zeVidena[v]) continue;
// Sicer jo dodajmo v vrsto, da bomo kasneje nadaljevali pot iz nje.
zeVidena|v] = true; vrsta.emplace(v);
}
}

return nasellzhod;

}

Oglejmo si Se implementacijo taksne resitve v pythonu. Koordinate kockic lahko pred-
stavimo s pythonovimi n-tericami (tuple); v taki obliki pricakuje nasa spodnja funkcija
zacetni polozaj (zacetek), kot rezultat pa vrne funkcija par taksnih n-teric, eno za naj-
noben izhod, funkcija vrne (None, None). Za oznacCevanje tega, katere kockice smo ze
videli (in dodali v vrsto), smo za spremembo namesto tabele uporabili mnozico (set v
pythonu).?

2Podobno bi lahko naredili tudi v gornji C++ovski resitvi, npr. z razredom unordered_set iz standardne
knjiznice. Ali je boljsa tabela ali mnozica, je v splo§nem tezko reci, saj je to odvisno od tega, koliksen
delez kvadra bomo morali preiskati (ve¢ kockic ko obis¢emo, manj je koristi od tega, da smo namesto
tabele uporabili mnozico).

Resitve nalog Solskega tekmovanja, stran 6/9

import collections

jePrazna[x * B * C +y * C + z] pove, ali je kockica (x, y, z) prazna.
def Labirint(A: int, B: int, C: int, jePrazna: list[int], zacetek: tuple[int, int, int]):
Iskanje v Sirino bomo zaleli pri kockici ,zacetek”.
u0 = (zacetek[0] * B + zacetek[1]) * C + zacetek|2]
zeVidena = set([u0]); vrsta = collections.deque([u0])
najblizjilzhod = None; najboljOddaljenlzhod = None
Preis¢imo vse prazne kockice, dosegljive iz zaetnega poloZaja.
while vrsta:
u = vrsta.popleft(); x=u // (B*C);y=(u//C) %B,z=u%C
Kockica (x, y, z) je prazna in dosegljiva. Ali je tudi izhod?
ifx==0ory==0o0rz==0o0orx==A—-lory==A—-1lorz==A—-1
Zadnji najdeni izhod bo najbolj oddaljen.
najboljOddaljenlzhod = (X, v, z)
Prvi najdeni izhod je tudi najbliZji.
if najblizjilzhod is None: najblizjilzhod = (x, v, z)

Preglejmo sosede trenutne kockice. Po eni od koordinat se lahko premaknemo za + 1.
for soseda in range(6):

v =[x, y, z]; v[soseda // 2] += 2 * (soseda % 2) — 1; (xx, yy, zz) = v

Kockica (xx, yy, zz) je soseda kockice (x, y, z).

Ali smo morda padli ven iz labirinta?

if not (0 <=xx < Aand 0 <=yy < Band 0 <= zz < C): continue;

Ce smo to sosednjo kockico Ze videli ali pa je zazidana, jo presko&imo.
v=(xx*B 4+ yy)*C+zz

if v in zeVidena or not jePraznal|v]: continue

Sicer jo dodajmo v vrsto, da bomo kasneje nadaljevali pot iz nje.
zeVidena.add(v); vrsta.append(v)

return (najblizjilzhod, najboljOddaljenlzhod)

5. Skladisce

Razmislimo, kaj se dogaja s srednjim zabojem po tezi, ko se mnozica izbranih zabojev
spreminja. Recimo, da je bilo prej izbranih 2k zabojev in srednji je bil k-ti najlazji
med njimi; in recimo, da se jim pridruzi Se en nov zaboj. Zdaj imamo 2k + 1 izbranih
zabojev, torej bo srednji tisti, ki je zdaj (k + 1)-vi najlazji med njimi. To je morda
isti zaboj kot prej, ¢e se je namre¢ novi zaboj vrinil pred njega v vrstnem redu po tezi
(torej ¢e je bil novi zaboj lazji od dosedanjega srednjega); ¢e pa je novi zaboj tezji od
starega srednjega, se srednji zaboj spremeni — novi srednji je tisti, ki stoji tik za starim
srednjim v vrstnem redu po tezi.

Podobno bi lahko razmisljali tudi v primerih, ko je bilo prej izbranih liho mnogo
zabojev in se jim pridruzi Se eden; in spet podobno tudi v primerih, ko neki zaboj
izpade iz mnozice izbranih zabojev. Ce si predstavljamo izbrane zaboje urejene po tezi,
se to, kateri zaboj je srednji, vedno spreminja le po malem, za en zaboj naprej ali nazaj
po tem vrstnem redu.

V gornjem razmisleku smo tudi videli, da je koristno vedeti, ali je novi zaboj (ki
ga dodajamo med izbrane) lazji ali tezji od (dosedanjega) srednjega po tezi. Ker nam
podprogrami, ki nam jih daje naloga na razpolago za delo z zaboji, omogoc¢ajo primerjati
zaboje po tezi le tako, da primerjamo neki zaboj iz dvorane A z najtezjim zabojem
dvorane B ali z najlazjim zabojem dvorane C, bo torej koristno, ¢e poskrbimo, da bo
eden od slednjih dveh ravno srednji zaboj po tezi (med izbranimi).

Na misel nam torej lahko pride, da bi hranili neizbrane zaboje v dvorani A, izbrane
zaboje pa v dvoranah B in C, in sicer naj B vsebuje srednji zaboj po tezi in vse tiste, ki
so lazji od njega, dvorana C pa naj vsebuje vse (izbrane) zaboje, ki so tezji od srednjega.
Ko se neki zaboj spremeni iz neizbranega v izbranega, ga lahko primerjamo s srednjim
zabojem po tezi (s funkcijo JeLazjiB) in se na podlagi tega odlo¢imo, ali ga bomo poslali
v dvorano B ali C. Po tej spremembi se lahko izkaze, da je v eni ali drugi dvorani prevec
zabojev: ¢e imamo izbranih m zabojev, jih mora biti [m/2] v dvorani B ter |m/2]

Resitve nalog Solskega tekmovanja, stran 7/9

v dvorani C.2 Ce jih je v dvorani B preve¢, moramo premakniti najtezji zaboj iz B
v C (kjer postane najlazji zaboj), ¢e pa je preve¢ zabojev v C, moramo najlazjega iz C
premakniti v B (kjer to postane najtezji zaboj).*

Z dosedanjim razmislekom smo ze resili lazjo razlic¢ico naloge, pri kateri se zabojem
stanje spreminja le iz neizbranega v izbrano. Malo ve¢ dela pa je s spremembami v
obratni smeri. Ko se neki izbrani zaboj spremeni v neizbranega, bi naSa dosedanja
resitev naceloma zahtevala, da ga premaknemo iz dvorane B oz. C (v katerikoli od njiju
se je pac¢ tedaj nahajal) v dvorano A (potem pa lahko spet primerno ,uravnotezimo*
dvorani B in C, torej po potrebi premaknemo kak zaboj iz tiste, v kateri jih je zdaj
preveg, v tisto, kjer jih je zdaj premalo). Toda spomnimo se, da iz dvoran B ali C ne
moremo premakniti poljubnega zaboja, pa¢ pa iz B le najtezjega, iz C pa le najlazjega.
Ce nas$ zaboj, ki se je pravkar spremenil iz izbranega v neizbranega, ni tak, ga bomo
morali torej do nadaljnjega pustiti v dvorani, kjer se nahaja; za vsako od dvoran B ali C
bomo morali loceno steti, koliko je v njej izbranih in koliko neizbranih zabojev; za vsak
zaboj bomo morali v neki tabeli vzdrzevati podatek o tem, ali je izbran ali ne; in ko
se potem zelimo ukvarjati z najtezjim zabojem v B (in podobno pri najlazjem zaboju
v C), moramo najprej preveriti, ¢e je ta zaboj sploh Se izbran; ¢e ni, je to eden od tistih,
ki bi jih morali ze prej premakniti iz B v A, pa tega takrat nismo mogli narediti in ga
moramo premakniti zdaj (v spodnji resitvi za to skrbi podprogram PospraviNeizbrane, ki
premika zaboje iz B v A, dokler ni najtezji v B eden od izbranih zabojev, ter iz C v A,
dokler ni najlazji v C eden od izbranih zabojev).

Ceprav zahteva naloga le opis postopka, si za primer vseeno oglejmo tudi implemen-
tacijo te resitve v C++:

#include <vector>
using namespace std;

enum Dvorana { A=0,B=1,C=2};

// Naslednja vektorja za vsak zaboj povesta, v kateri dvorani se nahaja in ali je izbran.
vector<Dvorana> kje; vector<bool> izbran;

int iB, iC; // Stevilo izbranih zabojev v B oz. C

int nB, nC; // stevilo neizbranih zabojev v B oz. C

void Inicializacija(int n)

{
kje.clear(); kje.resize(n, A);
izbran.clear(); izbran.resize(n, false);
nB=0;nC=0;iB=0;iC=0;

}

void PospraviNeizbrane()

// Premikajmo zaboje iz B, dokler je najteZji zaboj B-ja neizbran.
while (nB > 0)

if (int z = PremaknilzB(); ! izbran[z]) ——nB, kje[z] = A;

else { PremaknilzAvB(z); break; }

// Premikajmo zaboje iz C, dokler je najlaZji zaboj C-ja neizbran.
while (nC > 0)
if (int z = PremaknilzC(); ! izbran[z]) ——nC, kje[z] = A;
else { PremaknilzAvC(z); break; }
}

int SpremeniStanje(int z)

izbran[z] = ! izbran[z];

if (izbran[z]) {
// Ce je z Ze v eni od dvoran B in C, je treba le popraviti stevce.
if (kje[z] == B) { ++iB; ——nB; }

3Zapis [-] pomeni, da rezultat deljenja zaokrozimo navzgor, |-| pa, da ga zaokrozimo navzdol.

4Vet kot enega zaboja na ta naéin ne bo treba premakniti; o tem se lahko prepricamo, ¢e loéeno
obravnavamo §tiri primere glede na parnost stevila izbranih zabojev in glede na to, ali je novi izbrani
zaboj priel v B ali v C. Podrobnosti prepus¢amo bralcu za vajo.

Resitve nalog Solskega tekmovanja, stran 8/9

else if (kje[z] == C) { ++iC; ——nC; }

// Sicer ga moramo premakniti iz A v eno od dvoran B in C.
else if (iB + nB > 0 && JelazjiOdB(z)) { PremaknilzAvB(z); ++iB; kje[z] = B; }
else { PremaknilzAvC(z); ++iC; kje[z] = C; } }

else {
// Ce je z postal neizbran, ostane zaenkrat v svoji dvorani (B ali C),
// mi pa le popravimo $tevca izbranih in neizbranih zabojev te dvorane.
if (kje[z] == B) { ——iB; ++nB; }
else { ——iC; ++nC; } }

// UravnoteZimo dvorani B in C.
int stlzbranih = iB + iC;
int ciljB = (stlzbranih + 1) / 2; // Toliko izbranih bi moralo biti v B.
if (iB > ciliB) {
PospraviNeizbrane();
int z = PremaknilzB(); ——iB;
PremaknilzAvC(z); kje[z] = C; ++iC;}
else if (iB < ciljB) {
PospraviNeizbrane();
int z = PremaknilzC(); ——iC;
PremaknilzAvB(z); kje[z] = B; ++iB; }
// NajteZji zaboj v B je zdaj srednji izbrani po teZi.
if (iB == 0) return —1;
PospraviNeizbrane();
int srednji = PremaknilzB(); PremaknilzAvB(srednji); return srednji;

Resitve nalog Solskega tekmovanja, stran 9/9

21. srednjesolsko tekmovanje ACM v znanju racunalnistva

Solsko tekmovanje

23. januarja 2026

NASVETI ZA MENTORJE
O IZVEDBI TEKMOVANJA IN OCENJEVANJU

Tekmovalci naj piSejo svoje odgovore na papir ali pa jih natipkajo z ra¢unalnikom; oce-
njevanje teh odgovorov poteka v vsakem primeru tako, da jih pregleda in oceni mentor
(in ne npr. tako, da bi se poskusalo izvorno kodo, ki so jo tekmovalci napisali v svo-
jih odgovorih, prevesti na racunalniku in pognati na kaksnih testnih podatkih). Cas
reSevanja je omejen na 180 minut.

Nekatere naloge kot odgovor zahtevajo program ali podprogram v kakSnem konkre-
tnem programskem jeziku, nekatere naloge pa so tipa ,,opisi postopek“. Pri slednjih je
naceloma vseeno, v kaksni obliki je postopek opisan (naravni jezik, psevdokoda, diagram
poteka, izvorna koda v kak$nem programskem jeziku, ipd.), samo da je ta opis dovolj
jasen in podroben in je iz njega razvidno, da tekmovalec razume resitev problema.

Glede tega, katere programske jezike tekmovalci uporabljajo, nase tekmovanje ne
postavlja posebnih omejitev, niti pri nalogah, pri katerih je resitev v nekaterih jezikih
znatno krajsa in enostavnejsa kot v drugih (npr. uporaba perla ali pythona pri problemih
na temo obdelave nizov).

Kjer se v tekmovaléevem odgovoru pojavlja izvorna koda, naj bo pri ocenjevanju
poudarek predvsem na vsebinski pravilnosti, ne pa na sintakti¢ni. Pri ocenjevanju na
bijemo mogoce kvecjemu eno tocko od dvajsetih; glavno vprasanje pri izvorni kodi je,
ali se v njej skriva pravilen postopek za resitev problema. Ravno tako ni ni¢ hudega, ce
npr. tekmovalec v resitvi v C-ju pozabi na zaetku #includeati kaksnega od standardnih
headerjev, ki bi jih sicer njegov program potreboval; ali pa ¢e podprogram main() napise
tako, da vraca void namesto int.

Pri vsaki nalogi je mozno doseci od 0 do 20 tock. Od resitve pricakujemo predvsem
to, da je pravilna (= da predlagani postopek ali podprogram vraca pravilne rezultate),
poleg tega pa je zazeleno tudi, da je uc¢inkovita (manj u¢inkovite resitve dobijo man]
tock).

Ce tekmovalec pri neki nalogi ni uspel sestaviti cele resitve, pa¢ pa je prehodil vsaj
del poti do nje in so v njegovem odgovoru razvidne vsaj nekatere od idej, ki jih reSitev
tiste naloge potrebuje, naj vendarle dobi delez tock, ki je priblizno v skladu s tem,
koliksen delez resitve je nasel.

Ce v besedilu naloge ni drugace navedeno, lahko tekmovaléeva resitev vedno predpo-
stavi, da so vhodni podatki, s katerimi dela, podani v taksni obliki in v okviru taksnih
omejitev, kot jih zagotavlja naloga. Tekmovalcem torej naceloma ni treba pisati resitev,
ki bi bile odporne na razne napake v vhodnih podatkih.

Ce oblika vhodnih podatkov ni natanéno dolocena, si lahko podrobnosti tekmovalec
izbere sam. Na primer, ¢e naloga pravi, da dobimo seznam parov, je to lahko v praksi
tabela (array), vektor, linked list ali Se kaj drugega, pari pa so lahko bodisi strukture,
ki jih je deklarirala tekmovalceva resitev, ali pa kaj iz standardne knjiznice (kot je pair
v C++ ali tuple v pythonu).

V nadaljevanju podajamo Se nekaj nasvetov za ocenjevanje pri posameznih nalogah.

1. Napredek

e Za vse tocke pricakujemo resitev s Gasovno zahtevnostjo O(n). Za drobne ne-
ucinkovitosti znotraj te ¢asovne zahtevnosti naj se ne odsteva tock (npr. v nasi
pythonovski resitvi bi lahko mestol bil slovar namesto seznama).

Navodila za ocenjevanje, stran 1/5

Resitve s ¢asovno zahtevnostjo O(nlog n) naj dobijo najve¢ 15 tock, tiste s Casovno
zahtevnostjo O(n?) pa najve¢ 10 tock, ¢e so sicer pravilne.

Glede rezultatov je dovolj, ¢e program nekako vrne ali izpise, kateri tekmovalec je
najbolj napredoval; ni treba izpisati, za koliko mest je napredoval.

Ce bi kaksna resitev pomotoma racunala, kateri je najbolj nazadoval namesto
najbolj napredoval, naj se ji zaradi tega odsteje dve tocki.

Ni se tezko prepricati, da gotovo obstaja vsaj en tekmovalec, ki je na drugi tekmi
uvrséen vsaj tako visoko kot na prvi. ReSitev se sme opirati na to dejstvo (npr.
pri inicializaciji kaksne spremenljivke, preden za¢ne iskati tekmovalca z najvecjim
napredkom), ne da bi ga posebej utemeljila.

2. Tabela medalj

3.

Pri tej nalogi poudarek ni na ucinkovitosti resitve, saj besedilo posebej pravi, da
je drzav in medalj razmeroma malo. Ce je v podatkih omenjenih d razliénih drzav,
sme resitev (za vse tocke) porabiti O(d) ¢asa za vsako prebrano medaljo (npr. ker
hrani zapise o drzavah v seznamu, ki ga mora preiskati po vrsti, da najde zapis za
pravo drzavo; primer tega je nasa resitev v C++) in O(d?) ¢asa za urejanje drzav
v pravi vrstni red (npr. morda si bo kak tekmovalec napisal svojo improvizirano
razli¢ico urejanja z izbiranjem ali kaj podobnega).

Nasi dve resitvi za dolo¢anje Sirine stolpcev z medaljami najprej poisceta najvecjo
vrednost v vsakem stolpcu, nato pa izracunata, koliko znakov dolg niz nastane iz
te vrednosti. Za enako dobro naj Steje tudi reSitev, ki pretvori vsako vrednost v
niz in si zapomni dolzino najdaljSega izmed tako dobljenih nizov.

Ce se ve¢ drzav ujema v Stevilu medalj vseh treh barv, je vseeno, v kaksnem
vrstnem redu so urejene (ni treba, da so npr. po imenu ali kaj podobnega). Ce pa
bi kaksna reSitev uredila drzave le padajoce po §tevilu zlatih medalj, pozabila pa
bi, da je treba tiste z enakim Stevilom zlatih urediti padajoce po Stevilu srebrnih
(in Ce je treba, tudi po bronastih), naj se ji zaradi tega odsteje tri tocke.

Besedilo naloge pravi, da stolpci ne smejo biti §irsi, kot je treba. Ce se kaksna
reSitev ne bi trudila izracunati Sirine stolpcev, ampak bi zanje postavila neko
vnaprej dolo¢eno dovolj veliko Sirino (npr. iz besedila naloge vidimo, da je za imena
drzav dovolj 20 znakov, za Stevilo medalj pa najve¢ 4 znaki), naj se ji zaradi tega
odsteje 5 tock.

Resitvi, ki med stolpci pozabi izpisati presledek, naj se zaradi tega odsteje dve
tocki.

Nasi resitvi sta si za poravnavanje stolpcev pri izpisu pomagali z I/O-manipulatorji
v C++ in s formatted string literali v pythonu. Za enako dobro naj Steje tudi,
Ce bi resitev sama poskrbela za izpis primernega stevila presledkov na primernem
mestu (in jih npr. izpisovala v zanki).

Okroznica

Besedilo naloge pravi, da je uciteljev, razredov itd. malo, zato pri tej nalogi po-
udarek ni na ucinkovitosti resitve. Na$i dve resitvi na primer predelata seznam
uciteljev, ki se jim izogibamo, v tabelo logi¢nih vrednosti ali pa v mnozico, kar nam
omogoca, da v O(1) casa preverimo, ali se nekemu ucitelju izogibamo ali ne. Ce bi
kaksna resitev namesto tega Sla vsaki¢ znova (pri vsakem zapisu na urniku) v zanki
po seznamu in preverjala, ali je ucitelj s trenutnega zapisa prisoten v seznamu, naj
se ji zaradi te neucinkovitosti odsteje 1 tocko. Ravno tako naj se odsteje 1 tocko
resitvi, ki bi predpostavila, da kot vhodni podatek ze dobi mnozico uciteljev, ki se
jim je treba izogibati, in ne seznama oz. zaporedja (kot pravi naloga).

Navodila za ocenjevanje, stran 2/5

e Ce bi kaksna resitev za preverjanje tega, ali je neki razred ze obvestila ali ne,
porabila po ve¢ kot O(1) ¢asa, naj se ji zaradi tega odsteje 1 tocko. (Primer bi
bila npr. resitev, ki si pripravlja seznam ze obiskanih razredov namesto tabele
logi¢nih vrednosti ali mnozice; ali pa resitev, ki se vsakic¢ z zanko zapelje po doslej
sestavljenem razporedu obiskov).

e Naloga ne zahteva, naj bo razpored obiskov, ki ga vrne tekmovalceva resitev, v
kaksnem posebnem vrstnem redu (npr. urejen po ¢asu).

e Resitev sme predpostaviti, da so zapisi v urniku, ki ga dobi kot vhodni podatek, na
neki naé¢in urejeni (npr. po ¢asu), ¢eprav od tega sicer ni nobene posebne koristi.

e Nasi dve resitvi kot razpored obiskov pripravita seznam parov oblike (ucilnica,
ura), za enako dobro pa naj velja tudi resitev, ki vrne seznam parov oblike (razred,
ura) ali pa kar seznam primernih zapisov iz urnika, ki ga je dobila kot vhodni
podatek.

e Naloga posebej poudarja, da smemo obiskati posamezni razred najve¢ enkrat.
Resitvam, ki obiscejo kak razred po veckrat, naj se zaradi tega odsteje §tiri tocke.

e Resitvam, ki obiscejo kaksnega od uciteljev, ki bi se jim morale izogibati, naj se
zaradi tega odsteje stiri tocke.

e Resitvam, ki ne preverijo, ali so uspele obiskati vse razrede (in zato morda vrnejo
neki neveljaven razpored, ki obisée nekaj razredov, ne pa vseh), naj se zaradi tega
odsteje tri tocke.

4. Tridimenzionalni labirint

e V nasem primeru resitve smo labirint predstavili z enodimenzionalno tabelo logic-
nih vrednosti; enako dobro je seveda lahko tudi kaj drugega, npr. tridimenzionalna
tabela ali pa celo mnozica praznih kockic ipd. Lahko bi tudi uporabili tabelo
velikosti 100 x 100 x 100, kar je pri tej nalogi najve¢ji mozni labirint, in bi bila
pac¢ pri manjsih labirintih delno neizkoriscena.

e Podobno je tudi vseeno, ali resitev za oznacevanje ze obiskanih kockic uporablja
tabelo (kot nasa C++ovska resitev) ali mnozico celih stevil (kot nasa pythonovska
resitev) ali cel6 mnozico trojic (z,y, 2). Ce pa bi resitev uporabila tu kaksno
posebej neucinkovito podatkovno strukturo, pri kateri bi preverjanje, ali je bila
kockica ze obiskana, vzelo ve¢ kot O(1) ¢asa, naj se ji zaradi tega odsteje dve
tocki.

e Namesto iskanja v Sirino si lahko si predstavljamo resitev, ki z rekurzijo pregleduje
vse mozne poti iz zacetne kockice. Tezava je, da je (Ge so v labirintu cikli) taksnih
poti lahko eksponentno mnogo, zato je lahko ta resitev zelo neucinkovita. Taksne
resitve naj dobijo najve¢ 15 tock, ¢e so drugace pravilne.

e Ce pa bi taksna resitev morda pozabila preveriti, ali je v neki kockici ze bila na
nekem zgodnejsem koraku poti (torej v nekem nadrejenem rekurzivnem klicu), in
bi se zaradi tega na nekaterih labirintih lahko zaciklala, naj dobi najve¢ 13 tock.
(To je namre¢ potem pravzaprav resitev lazje razlicice naloge, omenjene na koncu
besedila naloge.)

5. Skladisce

e Ta naloga je za Solsko tekmovanje razmeroma tezka in ne moremo pricakovati,
da bodo tekmovalci pravilno poskrbeli za prav vse podrobnosti, sploh ker neka-
tere od njih verjetno opazimo Sele, ¢e resitev implementiramo in preizkusimo na
racunalniku. Zanimata nas predvsem (1) ideja, da v dvorani B hranimo zaboje,
lazje od srednjega, v dvorani C pa zaboje, tezje od srednjega (srednji zaboj lahko

Navodila za ocenjevanje, stran 3/5

potem naceloma hranimo v katerikoli od njiju; nasa resitev ga hrani v B, lahko pa
bi ga tudi v C, ¢e bi temu primerno prilagodili resitev), in da zaboje po potrebi
primerno prerazporejamo med dvoranama; in (2) ideja, da zaboje, ki so postali
neizbrani, ,,leno“ premikamo iz dvoran B in C nazaj v A, torej Sele takrat, ko tak
zaboj postane najtezji v B ali najlazji v C. Lazja razli¢ica naloge (za 13 tock od
20), ki jo omenja zadnji odstavek besedila, zahteva le idejo (1).

Naloga pravi, naj operaciji JeLazjiOdB in JelLazjiOdC izvedemo ¢im manjkrat. Za
vse tocke pricakujemo, da resitev izvede v povpre¢ju O(1) teh operacij na vsako
spremembo stanja zaboja; z drugimi besedami, povpretno Stevilo teh operacij
na vsako spremembo stanja zaboja mora biti navzgor omejeno z neko konstanto,
neodvisno od n. (NaSa uradna resitev izvede najve¢ eno tako operacijo pri spre-
membi neizbranega zaboja v izbranega, pri obratni spremembi pa sploh nobene.)
Resitve, ki izvedejo ve¢ kot O(1) taksnih operacij, naj dobijo najve¢ 8 tock, ¢e
so drugace pravilne. Primer taksne reSitve dobimo, ¢e opazimo, da ¢e imamo vse
zaboje ves ¢as v dvorani A, lahko dva zaboja, recimo u in v, primerjamo po tezi
takole: PremaknilzAvB(v); bool b = JelLazjiOdB(u); PremaknilzB(). Po teh treh stavkih
nam b pove, ali je zaboj u lazji od zaboja v. Ko znamo tako primerjati poljubna
dva zaboja po tezi, lahko vzdrzujemo npr. urejen seznam izbranih zabojev, vanj
na primerno mesto vrivamo zaboje, ko postanejo izbrani, ali jih iz njega briSemo,
ko prenehajo biti izbrani, in zlahka vidimo, kateri je srednji po tezi. Toda taksna
resitev uporabi po vsaki spremembi stanja O(n) primerjav (klicev JeLazjiOdB); to
lahko zmanjsamo na O(logn), ¢e pri ugotavljanju, kam v seznamu je treba vriniti
nov zaboj, uporabimo bisekcijo, ali pa ¢e izbrane zaboje namesto v urejenem se-
znamu hranimo v kaksni drevesasti podatkovni strukturi, v vsakem primeru pa je
to ve¢ od O(1).

Primer podrobnosti, ki jih ¢lovek pri tej nalogi zlahka spregleda in ki morda v
resitvi niti ne pridejo do izraza, ¢e pisemo le opis postopka in ne implementacije:

— Morda pustimo pri uravnotezevanju dvoran B in C (da je v vsaki od njiju
pravo stevilo izbranih zabojev) v kaksni od njiju en izbran zaboj prevec ali
premalo.

— Ko pride nov izbran zaboj, ga morda primerjamo z najtezjim iz B, ne da bi
se prej prepricali, da B ni prazna.

— Morda vrnemo najtezji zaboj iz B v prepricanju, da je to srednji po tezi med
izbranimi zaboji, pa se prej nismo prepricali, ali je ta zaboj sploh izbran
(lahko je to eden od zabojev, ki niso ve¢ izbrani, pa jih Se nismo utegnili
premakniti iz B nazaj v A).

— Ko neki zaboj postane izbran, ga morda vedno poskusamo premakniti iz A
v B ali C, pri tem pa pozabimo na moznost, da je ta zaboj lahko ze v B
ali C (ker je bil neko¢ prej izbran, potem pa je postal neizbran in ga odtlej
Se nismo uspeli premakniti v A).

Za taksne drobne napake se morda lahko odsteva po eno tocko, ni pa misljeno, da
bi se zaradi tega bistveno spremenilo $tevilo tock, ki jih je resitev sicer dobila (¢e
jih je) zaradi pravilne ideje.

Navodila za ocenjevanje, stran 4/5

Tezavnost nalog

Drzavno tekmovanje ACM v znanju racunalnistva poteka v treh tezavnostnih skupinah
(prva je najlazja, tretja pa najtezja); na tem Solskem tekmovanju pa je skupina ena
sama, vendar naloge v njej pokrivajo razmeroma Sirok razpon zahtevnosti. Za obcutek
povejmo, s katero skupino drzavnega tekmovanja so po svoji tezavnosti primerljive po-
samezne naloge letoSnjega Solskega tekmovanja:

Kam bi sodila po tezavnosti
Naloga na drzavnem tekmovanju ACM
1. Napredek lazja do srednja naloga v prvi skupini
2. Tabela medalj | srednja do tezja naloga v prvi ali lazja v drugi skupini
3. Okroznica tezja naloga v prvi ali lazja v drugi skupini
4. Labirint srednje tezka naloga v drugi ali lazja v tretji skupini
5. Skladisce tezka naloga v drugi ali srednja v tretji skupini

Ce torej na primer neki tekmovalec resi le eno ali dve lazji nalogi, pri ostalih pa ne naredi
(skoraj) nicesar, to Se ne pomeni, da ni primeren za udelezbo na drzavnem tekmovanju;
pac pa je najbrz pametno, ¢e na drzavnem tekmovanju ne gre v drugo ali tretjo skupino,
pac pa v prvo.

Podobno kot prejsnja leta si tudi letos zelimo, da bi ¢im ve¢ tekmovalcev s Solskega
tekmovanja prislo tudi na drzavno tekmovanje in da bi bilo Solsko tekmovanje predvsem
v pomo¢ tekmovalcem in mentorjem pri razmisljanju o tem, v kateri tezavnostni skupini
drzavnega tekmovanja naj kdo tekmuje.

Zadnja leta na drzavnem tekmovanju opazamo, da je v prvi skupini izrazito veliko
tekmovalcev v primerjavi z drugo in tretjo, med njimi pa je tudi veliko takih z zelo
dobrimi rezultati, ki bi prav lahko tekmovali tudi v kaksni tezji skupini. Mentorjem
zato priporocamo, naj tekmovalce, ¢e se jim zdi to primerno, spodbudijo k udelezbi v
zahtevnejsih skupinah.

Navodila za ocenjevanje, stran 5/5

