3. osnovnosolsko tekmovanje ACM v znanju racunalnistva

Solsko tekmovanje

23. januar 2026

NASVETI ZA TEKMOVALCE

Naloge na tem Solskem tekmovanju pokrivajo Sirok razpon tezavnosti, tako da ni nic¢
hudega, ¢e ne zna$ resiti vseh. V okviru svoje resitve obvezno poleg izvorne kode v
nekaj stavkih opisi, kako deluje tvoja resitev in na kaksni ideji temelji.

Pri ocenjevanju so vse naloge vredne enako Stevilo to¢k. Svoje odgovore dobro utemelji.
Prizadevaj si predvsem, da bi bile tvoje resitve pravilne, ob tem pa je zaZeleno, da so tudi
¢im bolj udinkovite (take dobijo ve¢ tofk kot manj ufinkovite). Za manjSe sintakti¢ne
napake se naceloma ne odbije veliko to¢k. Priporoc¢ljivo in zaZeleno je, da so tvoje
resitve napisane pregledno in ¢itljivo. Ce je na listih, ki jih oddajas, vec¢ razli¢ic resitve
za kaksno nalogo, jasno oznaci, katera je tista, ki naj jo ocenjevalci upostevajo.

Ce naloga zahteva branje ali obdelavo vhodnih podatkov, lahko tvoja resitev (¢e v nalogi
ni drugace napisano) predpostavi, da v vhodnih podatkih ni napak (torej da je njihova
vsebina in oblika skladna s tem, kar piSe v nalogi).

Nekatere naloge zahtevajo branje podatkov s standardnega vhoda in pisanje na standar-
dni izhod. Za pomo¢ je tu nekaj primerov programov, ki delajo s standardnim vhodom
in izhodom:

e Program, ki prebere s standardnega vhoda dve Stevili in izpiSe na standardni izhod
njuno vsoto:

program BranjeStevil; #include
var i, j: integer; int main() {
begin int i, j;
ReadLln(i, j); scanf ("%d %d", &i, &j);
WriteLn(i, > + 7, j, > =7, i + j); printf("%d + %d = %d\n", i, j, i + j);
end. return 0;
}

e Program, ki bere s standardnega vhoda po vrsticah, jih Steje in prepisuje na standar-
dni izhod, na koncu pa izpiSe Se skupno dolzino:

program BranjeVrstic; #include
var s: string; i, d: integer; #include
begin
i:=0; 4d :=0; int main() {
while not EOF do begin char s[101]; int i = 0, d = 0;

ReadLn(8); i := i + 1; while (scanf ("}, ["\nl%*c", s) == 1) {

d := d + Length(s); i++; d += strlen(s);

WriteLn(i, ’. vrstica: "?, s, ’"?); printf("%d. vrstica: \"%s\"\n", i, s); }
end; printf ("Skupaj %d vrstic, %d znakov.\n",
WriteLn(’Skupaj ’, i, ’ vrstic, ’, d, i, d);

> znakov.?’); return O;
end. }

Opomba: C-jevska razli¢ica gornjega programa predpostavlja, da ni nobena vrstica vhodnega
besedila daljSa od sto znakov. V praksi je bolje uporabljati funkcije oz. nacine, ki dovoljujejo
omejitev branja tudi glede na velikost tabele, vendar imamo na programerskih tekmovanjih
omejitve vhodnih podatkov in zagotovila glede njih, tako da bo tudi tak scanf zadoscal.

Navodila in nasveti za tekmovalce, stran 1/3

e Program, ki bere s standardnega vhoda po znakih, jih prepisuje na standardni izhod, na

koncu pa izpiSe e Stevilo prebranih znakov (ne vStevsi znakov za konec vrstice):

program BranjeZnakov;
var i: integer; c: char;

begin
while not EOF do
begin
Read(c); Write(c); i =i + 1
end;

WriteLn(’Skupaj ’, i, ’ znakov.’);
end.

Se isti trije primeri v pythonu:

a, b = input().split()
a = int(a)

b = int(b)

print(a, b, a + b)

import sys

idx_vrstice = st_znakov = 0

for vrstica in sys.stdin:
vrstica = vrstica.rstrip(’\n’)
idx_vrstice += 1
st_znakov += len(vrstica)

#include
int main() {
int i = 0, c;
while ((c = getchar()) != -1){
i++; putchar(c);
}
printf ("Skupaj %d znakov.\n", i);
return O;

print(£"{idx_vrstice}. vrstica: ’{vrstical}’")
print (f"{idx_vrstice} vrstic, {st_znakov} znakov.")

import sys

st_znakov = 0
while True:
znak = sys.stdin.read(1)

if znak == "":

break
sys.stdout.write(znak)
if znak != ’\n’:

st_znakov += 1
print (f"Skupaj {st_znakov} znakov.")

Navodila in nasveti za tekmovalce, stran 2/3

Se isti trije primeri v javi:

import java.io.x;
import java.util.Scanner;
public class Primerl {
public static void main(String[] args) throws IOException {
Scanner fi = new Scanner(System.in);
int i = fi.nextInt(); int j = fi.nextInt();
System.out.println(i + " + " + j + " =" + (i + j));

import java.io.*;
public class Primer2 {
public static void main(String[] args) throws IOException {
BufferedReader fi = new BufferedReader(new InputStreamReader(System.in));
int i = 0, d = 0; String s;
while ((s = fi.readLine()) !'= null) {
i++; d += s.length();
System.out.println(i + ". vrstica: \"" + s + "\""); }
System.out.println(i + " vrstic, " + d + " znakov.");

import java.io.*;
public class Primer3 {
public static void main(String[] args) throws IOException {
InputStreamReader fi = new InputStreamReader(System.in);
int i =0, c;
while ((c = fi.read()) >= 0) {
System.out.print ((char) c); if (c !'= ’\n’ && c !'= ’\r’) i++; }

System.out.println("Skupaj " + i + " znakov.");

Svoje odgovore dobro utemelji. Ce piges izvorno kodo programa ali podprograma, OBVEZ-
NO tudi v nekaj stavkih z besedami opisi idejo, na kateri temelji tvoja resitev. Ce ni v nalogi
drugace napisano, lahko tvoje resitve predpostavljajo, da so vhodni podatki brez napak (da
ustrezajo formatu in omejitvam, kot jih podaja naloga). ZaZzeleno je, da so tvoje resitve poleg
tega, da so pravilne, tudi u€inkovite (bolj u¢inkovite resitve dobijo veé¢ tock). Naloge so $tiri in
pri vsaki nalogi lahko dobis od 0 do 25 tock.

Resitve bodo objavljene na https://rtk.ijs.si/.

Navodila in nasveti za tekmovalce, stran 3/3

3. osnovnosolsko tekmovanje ACM v znanju racunalnistva

Solsko tekmovanje

23. januar 2026

NALOGE ZA SOLSKO TEKMOVANJE

Svoje odgovore dobro utemelji. Ce piSes izvorno kodo programa ali podprograma,
OBVEZNO tudi v nekaj stavkih z besedami opisi idejo, na kateri temelji tvoja resitev.
Ce ni v nalogi drugace napisano, lahko tvoje resitve predpostavljajo, da so vhodni po-
datki brez napak (da ustrezajo formatu in omejitvam, kot jih podaja naloga). ZaZeleno
je, da so tvoje resitve poleg tega, da so pravilne, tudi uc¢inkovite (bolj udinkovite resitve
dobijo ve¢ tock). Naloge so §tiri in pri vsaki nalogi lahko dobis od 0 do 25 tock.

Resitve bodo objavljene na https://rtk.ijs.si/.

1 A4 trak

V dnevno sobo si je Luka prinesel list papirja v formatu A4, da nanj nariSe svojo
bodoc¢o mojstrovino. Ko je to videla njegova sestra, je Zelela tudi ona risati, a je papirja
zmanjkalo. Luko je prosila, naj ji odreze trak od svojega lista. Luka Zeli imeti dovolj
prostora za svojo risbo, zato te prosi, da napiSe§ program, ki bo izracunal, kakSna
plos¢ina ostane, ko od lista odreze trak Sirine £ mm.

Dimenzije formata A4 so 210 mm X 297 mm, torej je plos¢ina celotnega lista 210 mm -
297mm = 62370mm?. Luka bo rez naredil vzporedno s krajso stranico lista. To je
vodoravno, ¢e imamo list obrnjen kot obi¢ajno.

210 mm

A
Y

Luka

xmm Sestra

Slika 1: Skica lista A4 z vsemi merami

Vhodni podatki Izhodni podatki

Na vhodu je celo §tevilo x, ki pove Sirino Izpisi ploscino lista, ki preostane, ko
traku, ki ga bo odrezal Luka, v milime- Luka odreze trak Sirine .

trih.

Omejitve vhodnih podatkov

o 0 < x <297
Primer
Vhod: Izhod:
95 42420

Naloge za Solsko tekmovanje, stran 1/4

2 Toplotna regulacija

Sistem za toplotno regulacijo na Fakulteti za matematiko in fiziko v Ljubljani (odslej
FMF) je bil grajen e v prej$njem Casu in Ze krepko kaZe svoja leta.

Situacija je taka: vodstvo FMF-ja je nastavilo delovno temperaturo stavbe (Ty),
pri kateri Zelijo uporabniki delati. Poleg nje pa za dani trenutek vemo tudi trenutno
temperaturo stavbe (7}).

V zgodbi nastopata pa Se dva glavna akterja: Agencija Republike Slovenije za okolje
(odslej ARSO) in hisnik FMF. ARSO sistemu za toplotno regulacijo sporo¢i, ali je
trenutno poletje ali zima (ostalih letnih ¢asov ob izdelavi sistema e ni bilo); hisnik pa
prestavlja ogromno roc¢ico v trebuhu stavbe, ki doloca, ali se stavba greje ali hladi.

Delovna in trenutna temperatura se strinjata, ¢e lahko uporabniki stavbe trenutno
temperaturo priblizajo delovni s tem, da odprejo kaksno okno. Na primer: poleti je
zunaj bolj vroce kot notri, torej se temperaturi strinjata, e je trenutna temperatura
manjSa ali enaka delovni (saj bi pri odprtih oknih trenutna temperatura zrasla in se
priblizala delovni oz. Zeleni).

Sistem deluje na sledeci nacin: glede na letni ¢as preveri, ali se delovna in trenutna
temperatura strinjata ali ne. Ce se strinjata, se stavba toplotno ne regulira, ¢e se ne
strinjata, pa se regulira (torej se greje ali hladi, odvisno od tega, kaj je nastavil hignik).

Sistem bo stavbo pravilno toplotno reguliral, ¢e bo toplotna regulacija pravilno spre-
minjala trenutno temperaturo. Na primer, ¢e Zzelimo imeti poleti v stavbi 27 stopinj
Celzija, je trenutna temperatura previsoka in sistem stavbo Se dodatno greje, potem ne
deluje pravilno (pravilno bi bilo, ¢e bi jo pri previsoki temperaturi hladil). To situacijo
opisuje prvi vzorc¢ni primer.

Naloga

Ker je usklajeno delovanje stavbe z njenimi uporabniki pomembno in je cel sistem toplo-
tne regulacije hudo zakompliciran, te vodstvo fakultete prosi, da za dani primer preveris,
ali se sistem obnasa pravilno.

Vhodni podatki

V prvi vrstici vhoda se nahajata T, in T; (delovna in trenutna temperatura), loceni s
presledkom.

V drugi vrstici vhoda se nahajata [in r, letni ¢as ter nastavitev hisnikove rocice.
Pozimi velja [= 0, poleti pa [= 1, ro¢ica na 0 hladi, na 1 pa greje.

Omejitve vhodnih podatkov
o —273 < Ty, Ty < 1000,

o [,rec{0,1}.

Izhodni podatki

V eni sami vrstici izpisi pravilnost delovanja sistema. Ce se stavba ne regulira, izpisi
»SE NE REGULIRAK, ¢e se regulira pravilno, izpisi »SE REGULIRA PRAVILNO«,
in, ¢e se ne regulira pravilno, izpisi »SE REGULIRA NAROBE«.

Primer

1. vhod: 1. izhod:

27 28 SE REGULIRA NAROBE
11

2. vhod: 2. izhod:

27 40 SE NE REGULIRA
01

Naloge za Solsko tekmovanje, stran 2/4

Komentar

Naloga je posneta po resni¢nih dogodkih.

V prvem vzorénem primeru je poletje in stavba se greje, zato se regulira narobe.

V drugem vzorénem primeru je zima, trenutna temperatura pa je visja od Zelene
delovne, torej je za zblizanje delovne in trenutne temperature dovolj, ¢e samo odpremo
okna.

3 Pretvorba poti

Nekateri programi so ustvarjeni specifi¢no za operacijski sistem Linux. Ce jih Zelimo
pretvoriti v program, ki bo deloval na sistemu Windows, moramo obi¢ajno spremeniti
ali prilagoditi veliko kode. Med drugim moramo popraviti tudi naslove datotek v dato-
teCnem sistemu. Te imajo v Linuxu obliko

/home/anze/Documents/sola/predmeti/slovenscina/esej.txt

v Windowsih pa
C:\Users\anze\Documents\sola\predmeti\slovenscina\esej.txt

Poleg zamenjave smeri poSevnice (/ za Linux, \ za Windows) je torej razlika tudi v za-
cetku poti: uporabnikove datoteke so v Linuxu shranjene pod /home/uporabnisko_ime,
v Windowsih pa pod C:\Users\uporabnisko_ime. V racunalniku so tudi druge dato-
teke, s katerimi pa se v tej nalogi ne bomo ukvarjali.

Naloga

Napisi program, ki bo pretvoril pot iz Linuxovega formata v format Windows.

Vhodni podatki

Na vhodu bo ena vrstica besedila, tj. pot do neke datoteke, ki se za¢ne s /home. Vrstica
bo dolga najve¢ 200 znakov in sestoji le iz velikih in malih ¢rk angleske abecede, Stevk
in znakov /.

Izhodni podatki

Izpisi pot do datoteke, kot bi se prikazala na datote¢nem sistemu Windows. Za¢ne naj
se s C:\Users.

Primer

Vhod:

/home/anze/Documents/sola/predmeti/slovenscina/esej.txt

Izhod:

C:\Users\anze\Documents\sola\predmeti\slovenscina\esej.txt

Naloge za Solsko tekmovanje, stran 3/4

4 Hribarjenje

Soncnega januarskega dne je Jan dobil genialno idejo: privosécil si bo pohod. Primerno
se je obul, oblekel ter s seboj vzel vse ostale nujne potrebséine. A takoj ko je zaloputnil
vrata, je ugotovil, da je pozabil na najpomembnejSe: sploh si Se ni doloéil poti! Na sreco
odlocitev ne bo tezka, saj Jan dobro ve, kaksni sprehodi mu ugajajo in kaksni mu ne.

Edino, kar ga lahko pri sprehodu zmoti, je monotonost. Natanc¢neje, nadmorske
viS§ine tock njegove poti ne smejo tvoriti monotonega zaporedja. Zaporedje je mo-
notono, ¢e je urejeno bodisi naras¢ajo¢e bodisi padajo¢e. Na primer, med zaporedji
(1,2,4,5),(5,2,2,1,1) in (3,1, 4) sta monotoni prvi dve, tretje pa ni (ker prvi dve stevili
padata, zadnji dve pa narascata).

Jan je s seboj vzel poseben enodimenzionalni zemljevid, na katerem je seznam nad-
morskih vigin razli¢nih toc¢k hribovja (na primer (11,6,8,2,3,5,7,4)). Vsaka tocka po-
krajine ima razli¢no nadmorsko visino. Mozen sprehod je neki odsek tega seznama (na
primer (6,8,2,3) v naSem primeru). Sprehod je monoton, ¢e je zaporedje njegovih nad-
morskih vi§in monotono (na primer (2, 3,5)). Monoton sprehod je dolgocasen, ¢e se ga ne
da podaljgati na levi ali na desni tako, da ostane monoton. ((2,3,5) ni dolgo¢asen, ker ga
lahko podaljsamo na desni v (2,3,5,7), ki je tudi monoton. (2,3,5,7) pa je dolgo¢asen:
¢e ga podaljsamo, dobimo (8,2,3,5,7) ali (2,3,5,7,4), ki oba nista monotona.)

Da se bo lazje odlo¢il, Jana zanima, koliko sprehodov je dolgoc¢asnih in koliko jih je
monotonih. Ker je zemljevid prevelik, potrebuje tvojo pomo¢ pri ra¢unanju!

Naloga
Napi8i program, ki prebere velikost zemljevida ter zaporedje nadmorskih vi§in na njem
in izpi8e tevili dolgocasnih ter monotonih sprehodov.
Vhodni podatki
Prva vrstica vsebuje naravno Stevilo n — dolzino zemljevida. Druga vsebuje n naravnih
gtevil aq,as,...,a, — seznam nadmorskih visin.
Omejitve vhodnih podatkov
e 1 <n < 50000
e 1<@; <10°zavsak1<i<n

e Vsi a; so si med sabo razliéni.

Izhodni podatki

V prvi vrstici izpisi skupno $tevilo dolgocasnih sprehodov, v drugi pa skupno Stevilo
monotonih sprehodov. Ce pravilno izra¢una$ samo skupno Stevilo dolgoc¢asnih
sprehodov, dobis 50 % tock.

Primer

Vhod: Izhod:
8 5
116823574 18
Komentar

(2,3,5,7) in (7,4); monotoni

V tem primeru so dolgodasni sprehodi (11,6), (6,8),), 7
67 8)a (8’ 2)) 2) 3)7 (37 5)7 (57 7)a

,8), (
sprehodi pa (11), (6), (8), (2), (3), (5), (7), (4), (11,6
(7,4), (2,3,5), (3,5,7) ter (2,3,5,7).
Pri tej nalogi je lahko seznam tock dolg — razmisli tudi o tem, kako uéinkovita
je tvoja resitev (in o tem kaj zapisi).

=

Naloge za Solsko tekmovanje, stran 4/4

3. osnovnosolsko tekmovanje ACM v znanju racunalnistva

Solsko tekmovanje

23. januar 2026

RESITVE NALOG SOLSKEGA TEKMOVANJA

1 A4 trak

V nalogi preberemo pozitivno celo Stevilo z in izpiSemo 210 - (297 — z), ali pa enako
210 - 297 — 297 - x in druge oblike ra¢una, ki privede do istega rezultata.

#include

int main() {
int x;
scanf ("%d", &x);
printf ("%d\n", 210 * (297 - x));
return O;

Za pravilno resitev ucenec dobi 25 tock. Za kaksno sintakti¢no napako naj se odbije
od 1 do 5 tock. Ce je formula za plos¢ino, ki jo uporabi u¢enec, napacna, naj dobi najveé
10 tock.

2 Toplotna regulacija

Nalogo lahko brez tezav lo¢imo na dva dela: ugotavljanje, ali se FMF toplotno regulira,
in Ce se, ali se regulira pravilno ali narobe.

Stavba se ne regulira, ¢e bi lahko z odpiranjem okna popravili razmak med trenutno
in delovno temperaturo. To je tako, ko je poleti trenutna temperatura nizja od delovne,
pozimi pa visja.

Nato opazimo, da bomo pozimi vedno Zeleli greti in poleti hladiti (sicer se stavba
regulira narobe). Torej pravilnost regulacije je odvisna samo od tega, kako je hignik
nastavil roc¢ico (torej r) in letnega ¢asa (torej [).

Resitvi v C-ju in v Python-u sta ekvivalentni, s tem da razli¢no preverimo, ali se
stavba toplotno regulira ali ne. Pri prvi re¢emo, da se ne regulira, ¢e sta temperaturi
enaki ali Ce je resni¢nost izjav »trenutna temperatura je visja od delovne« in »trenutno
je poletje« razli¢na (torej ali je trenutna visja od delovne in je zima ali pa je trenutna
nizja od delovne in je poletje). V drugi resitvi pa obe moznosti, v katerih se stavba ne
regulira, razpiSemo eksplicitno.

Resitev v C-ju:

#include
int main(){
int T_d, T_t, 1, r;

scanf ("%d %d", &T_d, &T_t);
scanf ("%d %d", &l, &r);

if(T_d==T_t || ((T_d<T_t) != (1==1))) puts(”SE NE REGULIRA");
elseq{

Resitve nalog Solskega tekmovanja, stran 1/4

if (1!=r) puts("SE REGULIRA PRAVILNQO");
else puts("SE REGULIRA NAROBE");

}

return O;

}

Resitev v Python-u:

T_d, T_t = map(int, input().split())
1, r = map(int, input().split())

if (T_d <= T_t and 1 == 0) or (T_d >= T_t and 1 == 1):
puts("SE NE REGULIRA")

elif 1 == r:
print ("SE REGULIRA NAROBE")

else:
print ("SE REGULIRA PRAVILNQO")

Pri tej nalogi je 12 to¢k vredna ugotovitev in smiselno preverjanje tega, ali se tem-
peratura regulira, 8 tock pa, ali se regulira pravilno ali narobe (torej, da se morata
ujemati nacin regulacije in letni ¢as). Zadnjih 5 toc¢k pa sledi za pravilno implementa-
cijo. To pomeni, da ¢e tekmovalec pravilno ugotovi, kdaj se kaj dogaja, tega pa ne zna
naprogramirati, lahko e vedno dobi 20 tock.

3 Pretvorba poti

Naloga od nas zahteva, da zamenjamo vse poSevnice (slash, /) za leve poSevnice (back-
slash, \). Prav tako Zelimo zamenjati zaetni /home/ s C:\Users\. Pri tem moramo
paziti, v katerem vrstnem redu to po¢nemo: ¢e bomo najprej zmenjali vse razli¢ne
poSevnice, potem na zacetku ne bomo ve¢ imeli /home/, temve¢ \home\.

Resitev v C-ju najprej izpiSe del poti, ki bo vedno isti (C:\Users\), nato se pa
sprehodi ¢ez ostalo originalno pot in poSevnice zamenja z levimi poSevnicami, ostale pa
samo izpise.

#include
#include

int main(){
char pot[261];
int i;
scanf ("%s", pot);
printf ("C:\\Users\\");
for (i=strlen("/home/") ;pot[i];++i){
if (pot[il=="/")
putchar (’\\?);
else
putchar(pot[i]);
}
putchar (°\n’);
return O;

Resitev v Python-u pa najprej zamenja zacetek poti (domaé direktorij) in nato Se
posevnice ene v druge.

pot = input()

pot = ’C:\\Users\\’ + pot[len(’/home/’):]
pot = pot.replace(’/’, ’\\’)

print (pot)

Resitve nalog Solskega tekmovanja, stran 2/4

Pri tej nalogi bi dali priblizno 10 toc¢k za zamenjavo poSevnic, 10 tock pa za primerno
zamenjavo domacega direktorija. Ostalih 5 toCk pa za smiseln izpis konéne poti. Tu
je vseeno, ali pot izpisujemo sproti (kot v C-jevski resitvi), ali pa najprej izratunamo
novo pot in jo na koncu izpisemo (kot v resitvi v Python). V Python-u, ki nam ponuja
»priroCne« funkcije za delo z besedilom, moramo paziti, saj bi npr.

pot = pot.replace(’/home/’, ’C:\\Users\\’)

nadomestil vse! /home/ dele poti, ne pa samo tistega na zadetku poti.

Kot vidimo tudi v podanih resitvah, je desna poSevnica \ poseben znak in ga zato v
programih pisemo dvojno (kar se pri izvajanju nato obravnava kot en znak). Za napac¢no
uporabo desne poSevnice bi odbili kaksno tocko do tri, ve¢ pa ne.

4 Hribarjenje

Najprej razmislimo, kako najenostavneje presteti dolgo¢asne sprehode. To, da se mono-
tonega sprehoda ne da podaljSati na nekem krajis¢u, pomeni bodisi da tam zaporedje
spremeni »smer rasti« bodisi da je to ravno zacetek ali konec zemljevida. Torej, Ce je ta
dolgo€asen sprehod narascajoc, bo levo krajisce dolina (tocki pred in za krajis¢em bosta
vigji od krajisca) ali zaGetek zaporedja, desno pa vrh (tocki pred in za kraji¢em bosta od
njega nizji) ali konec zaporedja. Dolinam, vrhovom, zacetku in koncu zaporedja skupaj
pravimo ekstrems.

.....

.....

sprehod. Sledi, da je za Stetje dolgocasnih sprehodov dovolj presteti ekstreme in od tega
Stevila odsteti ena.

Zdaj se lotimo Se Stetja monotonih sprehodov. Vidimo, da so to ravno vsi sprehodi,
ki so v celoti vsebovani v nekem dolgo¢asnem sprehodu. Ce ima ta dolgocasni sprehod
dolzino I, bo vseboval natanko [monotonih sprehodov dolzine 1, [— 1 monotonih spre-
hodov dolzZine 2, ..., 2 monotona sprehoda dolZine [— 1 in 1 monoton sprehod dolZine
l. Skupno Stevilo je torej 1 +24---+1 = @

Paziti moramo Se, da so nekateri monotoni sprehodi pri tem Steti dvakrat. Vsak
sprehod dolZine 1, ki se za¢ne in kon¢a na neki dolini ali nekem vrhu, bo namre¢ vstet
kot »podsprehod« dolgocasnih sprehodov na obeh straneh te tocke.

Preprost nacin, da oboje prestejemo hkrati, je da gremo skozi zemljevid od leve
proti desni in v neki spremenljivki belezimo zadnji ekstrem, ki smo ga nasli. Ko najdemo
naslednjega, k Stevcu dolgocasnih sprehodov pristejemo 1, k §tevcu monotonih pa l(l';l) ,
kjer je | Stevilo tock med tem in prejdnjim ekstremom (vkljuéno z ekstremoma). Na
koncu od $tevila monotonih sprehodov $e odstejemo tiste, ki so bili steti dvakrat. Teh
je toliko, kot je dolin in vrhov, torej ravno Stevilo dolgocasnih sprehodov minus 1.

Alternativna metoda je, da k $tevcu monotonih sprehodov sproti pristevamo stevilo
monotonih sprehodov, ki se konajo na trenutni tocki. Ce je med prejinjim ekstremom
in trenutnim poloZajem natanko k tock (pri Cemer Stejemo tudi ekstrem in trenutni
poloZaj), bo monotonih poti, ki se kon¢ajo na trenutni tocki, prav tako k.

Resitev v C-ju uporablja prvo metodo:

#include
int a[50000];

int main() {
int n;
scanf ("%d", &n);
for (int i=0; i<n; i++) scanf("%d", &al[il);
int zadnji_ekstrem=0, dolgocasni=1, monotoni=0;
for (int i=1; i<n-1; i++) {

1Vsaj vse taksne, ki ne sledijo drugemo /home/ delu poti.

Resitve nalog Solskega tekmovanja, stran 3/4

}

if ((alil > ali-1] && al[i] > ali+1]) ||
(ali] < ali-1] && alil < ali+1])) {
dolgocasni++;
monotoni += (i-zadnji_ekstrem+1) * (i-zadnji_ekstrem+2) / 2;
zadnji_ekstrem = i;

}
b
monotoni += (n-1-zadnji_ekstrem+1) * (n-1-zadnji_ekstrem+2) / 2;
monotoni -= dolgocasni - 1; // prv monotonih odstejemo dvakrat stete

// odseke (tiste, ki lezijo na prevojih)
printf ("%d\n/d\n", dolgocasni, monotoni);
return O;

resitev v Python-u pa drugo:

n = int(input())
a = list(map(int, input().split()))
if n == 1: # Ce je samo en wrh, bo predstavljal

print(1, 1, sep=’\n’) # edino monotono in tudi edino dolgocasno
exit (0) # zaporedje.

V prvem vrhu se konca eno monotono zaporedje, v drugem pa dve. Na
zacetku je prvi ekstrem 0-ti vrh.

dolgocasna, monotona, e =0, 1 + 2, 0

for i in range(2, n):

Ce je btlo padanje (oz. usmerjenost) od i-2 do %i-1 drugacno, kot
je od 1-1 do 1, potem je i1-1 ekstrem. To pomenti, da imamo en
nov dolgocasen sprehod in ma novo nmastavimo zadnji znani ekstrem.
if (ali-1] > alil) != (ali-2] > ali-1]1):
dolgocasna += 1
e=1i-1
V 12 se koncajo monotona zaporedja, ki se zacnejo na
intervalu [e, 1], ki pa ima ¢ - e + 1 elementov.
monotona += i - e + 1

Na koncu pristejemo se dolgocasno zaporedje,

ki se konca na koncu seznama.
print(dolgocasna+l, monotona, sep=’\n’)

Pri tej nalogi je 13 tock vredno smiselno prestevanje dolgocasnih sprehodov, 12 tock
pa smiselno prestevanje monotonih sprehodov. Ocenjujemo tudi hitrost, glede na to,
kako uc¢inkovito tekmovalGeva resitev rac¢una Stevilo sprehodov. ReSitev, ki monotone
sprehode presteje tako, da iz vsakega vrha poisce levi (in ali desni) ekstrem, naj dobi za
ta del najve¢ polovico tock. Vse tocke naj dobi le resitev, ki se najve¢ nekajkrat zapelje
ez vse vrhove (ne dela pa poizvedb »za vsako tocko do ekstremax) ali Gesa podobnega
(re¢emo, da je O(n); torej taka, ki bi za dvakrat daljsi zemljevid porabila le priblizno

dvakrat ve¢ ¢asa).

Resitve nalog Solskega tekmovanja, stran 4/4

3. osnovnosolsko tekmovanje ACM v znanju racunalnistva

Solsko tekmovanje

23. januar 2026

NASVETI ZA MENTORJE
O IZVEDBI TEKMOVANJA IN OCENJEVANJU

Tekmovalci naj piSejo svoje odgovore na papir ali pa jih natipkajo z ra¢unalnikom; oce-
njevanje teh odgovorov poteka v vsakem primeru tako, da jih pregleda in oceni mentor
(in ne npr. tako, da bi se poskusalo izvorno kodo, ki so jo tekmovalci napisali v svo-
jih odgovorih, prevesti na ra¢unalniku in pognati na kaksnih testnih podatkih). Cas
reSevanja je omejen na 120 minut.

Glede tega, katere programske jezike tekmovalci uporabljajo, nase tekmovanje ne
postavlja posebnih omejitev, niti pri nalogah, pri katerih je resitev v nekaterih jezikih
znatno krajSa in enostavnej$a kot v drugih (npr. uporaba perla ali pythona pri problemih
na temo obdelave nizov).

Kjer se v tekmovaléevem odgovoru pojavlja izvorna koda, naj bo pri ocenjevanju
poudarek predvsem na vsebinski pravilnosti, ne pa na sintakti¢ni. Pri ocenjevanju na
bijemo mogoce kveéjemu eno tocko od dvajsetih; glavno vpraSanje pri izvorni kodi je,
ali se v njej skriva pravilen postopek za resitev problema. Ravno tako ni ni¢ hudega, ¢e
npr. tekmovalec v resitvi v C-ju pozabi na zacetku #includeati kaksnega od standar-
dnih headerjev, ki bi jih sicer njegov program potreboval; ali pa ¢e podprogram main ()
napiSe tako, da vra¢a void namesto int.

Pri vsaki nalogi je moZno doseci od 0 do 25 tock. Od reSitve pri¢akujemo predvsem
to, da je pravilna (= da predlagani postopek ali podprogram vrac¢a pravilne rezultate),
poleg tega pa je zaZeleno tudi, da je uc¢inkovita (manj uc¢inkovite resitve dobijo manj
tock).

Ce tekmovalec pri neki nalogi ni uspel sestaviti cele reSitve, pa¢ pa je prehodil vsaj
del poti do nje in so v njegovem odgovoru razvidne vsaj nekatere od idej, ki jih reSitev
tiste naloge potrebuje, naj vendarle dobi delez tock, ki je priblizno v skladu s tem,
kolikSen delez resitve je naSel.

Ce v besedilu naloge ni drugace navedeno, lahko tekmovalCeva resitev vedno predpo-
stavi, da so vhodni podatki, s katerimi dela, podani v taksni obliki in v okviru taksnih
omejitev, kot jih zagotavlja naloga. Tekmovalcem torej naceloma ni treba pisati resitev,
ki bi bile odporne na razne napake v vhodnih podatkih.

Ce oblika vhodnih podatkov ni natanéno dolocena, si lahko podrobnosti tekmovalec
izbere sam. Na primer, ¢e naloga pravi, da dobimo seznam parov, je to lahko v praksi
tabela (array), vektor, linked list ali Se kaj drugega, pari pa so lahko bodisi strukture,
ki jih je deklarirala tekmoval@eva resitev, ali pa kaj iz standardne knjiznice (kot je pair
v C++ ali tuple v pythonu).

Navodila za ocenjevanje, stran 1/2

Tezavnost nalog

Drzavno tekmovanje ACM v znanju ra¢unalnistva poteka v dveh tezavnostnih skupinah
(prva je lazja, druga pa teZja); na tem Solskem tekmovanju pa je skupina ena sama, ven-
dar naloge v njej pokrivajo razmeroma Sirok razpon zahtevnosti. Za obcéutek povejmo,
s katero skupino drzavnega tekmovanja so po svoji tezavnosti primerljive posamezne
naloge letoSnjega Solskega tekmovanja:

Kam bi sodila po tezavnosti
Naloga na drzavnem tekmovanju ACM
1. A4 trak lahka v prvi skupini
2. Toplotna regulacija | srednje tezka v prvi ali lahka v drugi
3. Pretvorba poti srednja v prvi ali lahka v drugi skupini
4. Hribarjenje tezja v drugi skupini

Ce torej na primer neki tekmovalec resi le eno ali dve lazji nalogi, pri ostalih pa ne naredi
(skoraj) nicesar, to 8e ne pomeni, da ni primeren za udelezbo na drzavnem tekmovanju;
pac pa je najbrz pametno, ¢e se drzavnega tekmovanja udelezi v prvi skupini.

Podobno kot prejsnja leta si tudi letos Zelimo, da bi ¢im ve¢ tekmovalcev s Solskega
tekmovanja prislo tudi na drzavno tekmovanje in da bi bilo Solsko tekmovanje predvsem
v pomo¢ tekmovalcem in mentorjem pri razmisljanju o tem, v kateri tezavnostni skupini
drzavnega tekmovanja naj kdo tekmuje.

Navodila za ocenjevanje, stran 2/2

